K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 1 2022

\(a^3+b^3=2021c^3\\ \Leftrightarrow a^3+b^3+c^3=2022c^3⋮6\left(2022⋮6\right)\left(1\right)\)

Mặt khác: \(\left(a^3+b^3+c^3\right)-\left(a+b+c\right)=\left(a-1\right)a\left(a+1\right)+\left(b-1\right)b\left(b+1\right)+\left(c-1\right)c\left(c+1\right)\)

Có \(\left(a-1\right)a\left(a+1\right);\left(b-1\right)b\left(b+1\right);\left(c-1\right)c\left(c+1\right)\) là 3 cặp số nguyên liên tiếp nên chia hết cho 6

Do đó \(\left(a^3+b^3+c^3\right)-\left(a+b+c\right)⋮6\)

Kết hợp (1) ta được đpcm

6 tháng 3 2019

\(f\left(-2\right)=4a-2b+c\)

\(f\left(3\right)=9a+3b+c\)

\(f\left(-2\right)+f\left(3\right)=13a+b+2c=0\)

\(\Rightarrow f\left(-2\right)=-f\left(3\right)\Rightarrow f\left(-2\right).f\left(3\right)=-f\left(-2\right)^2\le0\)

p/s: nhớ t nữa ko :>  

6 tháng 3 2019

\(f\left(x\right)=ax^2+bx+c\)

\(f\left(-2\right)=a.\left(-2\right)^2+\left(-2\right).b+c=4a-2b+c\)

\(f\left(3\right)=a.3^2+3.b+c=9a+3b+c\)

\(f\left(3\right)+f\left(-2\right)=4a-2b+c+9a+3b+c=13a+b+2c=0\)

\(\Rightarrow f\left(3\right)=-f\left(-2\right)\Rightarrow f\left(3\right)f\left(-2\right)=-\left[f\left(3\right)\right]^2\le0\left(đpcm\right)\)

12 tháng 4 2015

bài này thay f(x) bằng f(0), f(1), f(-1) là dk

 

23 tháng 4 2017

Ta có:f(1)=a+b+c

và f(-1)=a-b+c

Theo đề: f(1)+f(-1) \(⋮\)3

hay (a+b+c)+(a-b+c) \(⋮\)3

=> 2a +2c \(⋮\)3

=> 2(a+c) \(⋮\)3

mà (2,3)=1

nên a+c \(⋮\) 3

15 tháng 6 2018

Bài 1: 

a)

Giả sử a,b đều chia 3 dư 1

=> ab: 3 dư(1.1=1)(Lưu ý: Nếu 2 số chia cùng 1 số đều dư thì Tích 2 số đó chia cho số đó thì dư sẽ là tích của 2 dư 2 số đó)

=> ab -1 sẽ chia hết cho 3 (Cùng số dư khi trừ thì sẽ chia hết cho số đó)

Giả sử a,b đều chia 3 dư 2

=> ab : 3 (dư 2 x 2 = 4) => ab : 3 dư 1( Vì số dư không bao giờ lớn hơn số chia)

=> ab -1 sẽ chia hết cho 3

Vậy thì nếu a,b chia 3 cùng một số dư thì ab - 1 chia hết cho 3

b)

Ta nhận thấy số số 1 mà là số chẵn thì sẽ chia hết cho 11

Ví dụ: 11 : 11 = 1

           1111 : 11 = 101

           111111 : 11 = 10101

,.......

Số số 1 là 2002( là số chằn)

=> Số a chia hết cho 11 => a là hợp số

Bài 2:

Ta có: ab - ba = 10a + b - 10b - a = 9a - 9b =9 x (a - b)

Ta thấy rằng là số sau khi trừ luôn chia hết cho 9 => Số đó là hợp số

=> Không có số nguyên tố ab thỏa mãn điều kiện trên

18 tháng 6 2018

Cảm ơn bạn nha!!

8 tháng 10 2019

\(a^3+b^3=2\left(c^3-8d^3\right)\)

\(\Leftrightarrow a^3+b^3+c^3+d^3=2c^3-16d^3+c^3+d^3\)

\(=3c^3-15d^3=3\left(c^3-5d^3\right)⋮3\)

\(\Rightarrow a^3+b^3+c^3+d^3⋮3\)(1)

Ta có: \(a^3+b^3+c^3+d^3-a-b-c-d\)

\(=\left(a-1\right)a\left(a+1\right)+\left(b-1\right)b\left(b+1\right)\)

\(+\left(c-1\right)c\left(c+1\right)+\left(d-1\right)d\left(d+1\right)\)

Tích 3 số nguyên liên tiếp chia hết cho 3 nên 

\(\left(a-1\right)a\left(a+1\right)⋮3\)

\(\left(b-1\right)b\left(b+1\right)⋮3\)

\(\left(c-1\right)c\left(c+1\right)⋮3\)

\(\left(d-1\right)d\left(d+1\right)⋮3\)

\(\Rightarrow\left(a-1\right)a\left(a+1\right)+\left(b-1\right)b\left(b+1\right)\)

\(+\left(c-1\right)c\left(c+1\right)+\left(d-1\right)d\left(d+1\right)⋮3\)

hay \(a^3+b^3+c^3+d^3-a-b-c-d⋮3\)(2)

Từ (1) và (2) suy ra \(a+b+c+d⋮3\left(đpcm\right)\)

1 tháng 10 2018

-Ta có: a3-a= a.(a-1).(a+1) (với a thuộc Z). Mà a.(a-1).(a+1) là tích của 3 số nguyên liên tiếp nên a.(a-1).(a+1) chia hết cho 3.

 => a3-a chia hết cho 3.

-Chứng minh tương tự ta có b^3-b chia hết cho 3 và c^3-c chia hết cho 3 với mọi b,c thuộc Z.

=> a3+b3+c-(a+b+c) luôn chia hết cho 3 với mọi a,b,c thuộc Z.

=> nếu  a3+b3+cchia hết cho 3 thì a+b+c chia hết cho 3 và điều ngược lại cũng đúng.

Vậy đpcm.chúc bn hok tốt