Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Xét △OAC vuông tại A và △OBD vuông tại B
Có: OA = OB (gt)
COA = DOB (2 góc đối đỉnh)
=> △OAC = △OBD (cgv-gnk)
b, Xét △OCE và △ODE cùng vuông tại O
Có: OE là cạnh chung
OC = OD (△OAC = △OBD)
=> △OCE = △ODE (2cgv)
c, Ta có: DE = BE + BD mà BD = AC (△OBD = △OAC) ; CE = DE (△OCE = △ODE)
=> CE = BE + AC (đpcm)
ý AC = 1/2 BC còn có điều kiện gì nữa ko??
Vì tam giác ABC là tam giác cân , suy ra AB=AC ; góc B =góc C.
Xét tam giác ABH và tam giác AKC, có
AB = AC (cmt)
A là góc chung
K = H ( = 90 độ)
Suy ra tam giác ABH = tam giác AKC(g-c-g)
suy ra BH = CK ( hai cạnh tương ứng )
suy ra góc ABH = góc ACK ( hai góc tương ứng )
Xét tam giác KHB và tam giác KHC , có
CK = BH ( cmt)
Góc ABH = góc ACK ( cmt)
K = H ( = 90 độ )
Suy ra tam giác KHB = tam giác KHC ( g-c-g)
Suy ra KB = HC ( hai góc tương ứng)
Mà AB = BK + AK
AC = AH + CH
Suy ra AK = AH
Hình ; tự vẽ
Xét tam giác ADB và tam giác ADE có :
\(\widehat{BAD}=\widehat{EAD}\) ( do AD là tia p/g của \(\widehat{BAC}\))
AB = AE ( gt )
AD là cạnh chung
nên tam giác ADB = tam giác ADE ( c.g.c )
=> DB=DE ( hai cạnh tương ứng )
b) Có : \(\widehat{DBA}+\widehat{DBK}=180^O\)( Hai góc kề bù )
Có : \(\widehat{DEA}+\widehat{DEC}=180^{O^{ }}\)( Hai góc kề bù )
mà \(\widehat{DEA}=\widehat{DBA}\)( Do tam giác ADB = tam giácADE ) ((đã chứng minh ở phần a ))
=> \(\widehat{DBK}=\widehat{DEC}\)
Xét tam giác DBK = tam giác DEC có :
\(\widehat{DBK}=\widehat{DEC}\) ( cm trên )
BD = ED ( do tam giác ADB = tam giác ADE )
\(\widehat{BDK}=\widehat{EDC}\) ( hai góc đối đỉnh )
nên...........
vì AB = CD ; AD = BC
nên ABCD là hình bình hành
suy ra AB // CD VÀ BC // AD
Vì AB = CD ; AD = BC
Nên ABCD là hình bình hành
Suy ra AB // CD VÀ BC // AD
Hok tốt
a) E thuộc AB => AE CŨNG VUÔNG GÓC VỚI AC TẠI A => GÓC EAC=90
XÉT TAM GIÁC ABC VÀ TAM GIÁC ADE:
AB=AD
2 GÓC VUÔNG = NHAU
AC=AE
=> 2 TAM GIÁC = NHAU (C.G.C) => BC=DE
B) GỌI DE GIAO BC TẠI H. TAM GIÁC ABC=ADE => GÓC BCA= GÓC AED
TAM GIÁC AED: GÓC AED+ GÓC ADE=90
MÀ GÓC ADE= GÓC HDC ( ĐỐI ĐỈNH). GÓC BCA= GÓC AED
=> GÓC HDC+GÓC BCA=90 <=> TAM GIÁC DHC VUÔNG TẠI H. HAY DE VUÔNG GOC BC TẠI H
C) TAM GIÁC ABC VUÔNG TẠI A => GÓC B + GÓC C=90.
4B=5C => B=5/4 C. THAY B=5/4 C VÀO <=> 5/4 C+C=90 <=> C=40
MÀ GÓC AED= GÓC C (CMT) => GÓC AED=40