Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi chiều dài miếng bìa là
\(x\left(cm;x>4\right)\)
Chiều rộng miếng bìa là:
\(\frac{3x}{5}\left(cm\right)\)
Diện tích ban đầu là:
\(\frac{x\times3}{5}=x^2\times\frac{3}{5}\left(cm^2\right)\)
Diện tích mới của miếng bìa là:
\(\left(x-4\right)\times\left(\frac{3x}{5}-1\right)=\frac{1}{2}\times x^2\times\frac{3}{5}\Leftrightarrow x=10\)
Chu vi miếng bìa đó là:
\(2\times\left(10+\frac{3}{5}\times10\right)=32\left(cm\right)\)
Đáp số: 32 (cm)
Bạn viết đề sai rồi
Cái \(3\dfrac{14}{17}\) là hỗn số chứ ko phải là số tự nhiên nhân vs phân số
#)Giải :
(Hình bn tự vẽ)
AD là phân giác của ∆ABC \(\Rightarrow\) \(\frac{BD}{AB}=\frac{DC}{AC}\Rightarrow\frac{BD^2}{AB^2}=\frac{DC^2}{AC^2}\)
Ta có : \(BC=BD+CD=3.\frac{14}{17}+9.\frac{3}{17}=\frac{42}{17}+\frac{27}{17}=\frac{69}{17}\)
Mà ∆ABC vuông tại A nên theo định lí Py - ta - go \(\Rightarrow AB^2+AC^2=BC^2\Rightarrow AB^2+AC^2=\left(\frac{69}{17}\right)^2\)
Theo t/chất dãy tỉ số bằng nhau : \(\frac{BD^2}{AB^2}=\frac{DC^2}{AC^2}=\frac{BD^2+DC^2}{AB^2+AC^2}=\frac{\left(\frac{42}{17}\right)^2+\left(\frac{27}{17}\right)^2}{\left(\frac{69}{17}\right)^2}=\) dài dòng vãi ra @@
Chắc đề sai rồi
Thanks