\(\sqrt{m^2+2m+1}\sqrt{m^2-...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 7 2019

cái phần A là thiếu dấu cộng đấy ạ

5 tháng 7 2019

Em thử nha!Sai thì thôi:((

\(A=\left|m+1\right|+\left|m-1\right|=\left|m+1\right|+\left|1-m\right|\ge\left|m+1+1-m\right|=2\)

Dấu"=" xảy ra khi \(\left(m+1\right)\left(1-m\right)\ge0\Leftrightarrow-m^2+1\Leftrightarrow-1\le m\le1\)

\(B=\sqrt{\left(2a\right)^2-2.2a.1+1}+\sqrt{4a^2-2.2a.3+9}\)

\(=\left|2a-1\right|+\left|2a-3\right|=\left|2a-1\right|+\left|3-2a\right|\ge2\)

Dấu "=" xảy ra khi...

A=|m+1|+|m-1|=|m+1|+|1-m|>=|m+1+1-m|=2

Dấu = xảy ra khi -1<=m<=1

B=|2a-1|+|2a-3|=|2a-1|+|3-2a|>=|2a-1+3-2a|=2

Dấu = xảy ra khi 1/2<=a<=3/2

23 tháng 8 2018

a) x + \(\sqrt{\left(x-2^{ }\right)^2}\)= x +\(|x-2|\)= x +2-x (vì x<2)

b) \(\sqrt{\left(x-3\right)^2}\)-x = \(|x-3|-x=x-3-x\) (vì x>3)

c) m- \(\sqrt{m^2-2m+1}=m-\sqrt{\left(m-1\right)^2}\)

Những con còn lại bạn làm như trên và rút gọn đi là được

d: \(=x+y-\left|x-y\right|\)

=x+y-x+y=2y

e: \(=\left|5a-1\right|-4a=\left|5\cdot\dfrac{1}{2}-1\right|-2\)

\(=\dfrac{5}{2}-1-2=\dfrac{5}{2}-3=-\dfrac{1}{2}\)

f: \(=\left|2a-3\right|-4a-1\)

\(=\left|-10-3\right|-4\cdot\left(-5\right)-1=13+20-1=32\)

12 tháng 5 2018

a/ \(\sqrt{4a^4-12a^2+9}-\sqrt{a^4-8a^2+16}\)

\(\sqrt{\left(2a^2-3\right)^2}-\sqrt{\left(a^2-4\right)^2}\)

\(|2a^2-3|-|a^2-4|\)

\(2a^2-3+a^2-4\)
\(3a^2-7\)

Thay a=\(\sqrt{3}\).Ta có:

\(3.\left(\sqrt{3}\right)^2-7\)

= 3.3-7=2

12 tháng 5 2018

b/ \(\sqrt{10a^2-12a\sqrt{10}+36}\)

\(\sqrt{\left(a\sqrt{10}\right)^2-2.a\sqrt{10}.6+6^2}\)

\(\sqrt{\left(a\sqrt{10}-6\right)^2}\)

\(|a\sqrt{10}-6|\)

=  \(-a\sqrt{10}+6\)

Thay  a= \(\sqrt{\frac{5}{2}}-\sqrt{\frac{2}{5}}\)=\(\frac{3}{\sqrt{10}}\),Ta có:

\(-\frac{3}{\sqrt{10}}.\sqrt{10}+6\)

= -3+6 =3

15 tháng 7 2017

a) \(\sqrt{-9a}-\sqrt{9+12a+4a^2}\) \(=\sqrt{9.\left(-a\right)}-\sqrt{\left(3+2a\right)^2}=3\sqrt{-a}-\left|3+2a\right|\)

\(=3\sqrt{9}-\left|3+2\left(-9\right)\right|=3.3-15=-6\)

b) \(1+\dfrac{3m}{m-2}\sqrt{m^2-4x+4}=1+\dfrac{3m}{m-2}\sqrt{\left(m-2\right)^2}=1+\dfrac{3m\left|m-2\right|}{m-2}\)

\(=\left\{{}\begin{matrix}1+3m\left(nếu\left(m-2\right)>0\right)\\1-3m\left(nến\left(m-2\right)< 0\right)\end{matrix}\right.\) \(=\left\{{}\begin{matrix}1+3m\left(nếu\left(m>2\right)\right)\\1-3m\left(nếu\left(m< 2\right)\right)\end{matrix}\right.\)

ta có : \(m=1,5< 2\) vậy giá trị của biểu thức tại m = 1,5 là \(1-3m\) = \(1-3.1,5=-3,5\)

c) \(\sqrt{1-10a+25a^2}-4a=\sqrt{\left(1-5a\right)^2}-4a=\left|1-5a\right|-4a\)

\(=\left\{{}\begin{matrix}1-9a\left(nếu\left(1-5a\right)\ge0\right)\\a-1\left(nếu\left(1-5a\right)< 0\right)\end{matrix}\right.\) \(=\left\{{}\begin{matrix}1-9a\left(nếu\left(a\le\dfrac{1}{5}\right)\right)\\a-1\left(nếu\left(a>\dfrac{1}{5}\right)\right)\end{matrix}\right.\)

ta có : \(a=\sqrt{2}>\dfrac{1}{5}\) vậy giá trị của biểu thức tại \(a=\sqrt{2}\) là a - 1 = \(\sqrt{2}-1\)

d) \(4x-\sqrt{9x^2+6x+1}=4x-\sqrt{\left(3x+1\right)^2}=4x-\left|3x+1\right|\)

\(=\left\{{}\begin{matrix}x-1\left(nếu\left(x\ge-\dfrac{1}{3}\right)\right)\\7x+1\left(nếu\left(x< -\dfrac{1}{3}\right)\right)\end{matrix}\right.\)

ta có : \(x=-\sqrt{3}< -\dfrac{1}{3}\) vậy giá trị của biểu thức tại \(x=-\sqrt{3}\)\(7.\left(-\sqrt{3}\right)+1=1-7\sqrt{3}\)

22 tháng 4 2017

Để học tốt Toán 9 | Giải bài tập Toán 9

Để học tốt Toán 9 | Giải bài tập Toán 9

NV
24 tháng 5 2019

Đặt \(\left\{{}\begin{matrix}\sqrt{4a+1}=x\\\sqrt{4b+1}=y\end{matrix}\right.\) \(\Rightarrow1\le x;y\le3\)

\(\Rightarrow x^2+y^2=4\left(a+b\right)+2=10\)

Do \(1\le x\le3\Rightarrow\left(x-1\right)\left(x-3\right)\le0\Rightarrow x^2-4x+3\le0\)

\(\Rightarrow x^2+3\le4x\Rightarrow x\ge\frac{x^2+3}{4}\)

Tương tự, do \(1\le y\le3\Rightarrow y\ge\frac{y^2+3}{4}\)

\(\Rightarrow P=x+y\ge\frac{x^2+3}{4}+\frac{y^2+3}{4}=\frac{x^2+y^2+6}{4}=\frac{16}{4}=4\)

\(\Rightarrow P_{min}=4\) khi \(\left(x;y\right)=\left(1;3\right);\left(3;1\right)\) hay \(\left(a;b\right)=\left(0;2\right);\left(2;0\right)\)

5 tháng 11 2021

Tại sao lại có ĐK 1=<x;y=<3 v ạ

 

29 tháng 9 2020

\(a)\sqrt{-9a}-\sqrt{9+12a+4a^2}\)

\(==\sqrt{3^2.\left(-a\right)}-\sqrt{3^2-2.3.2a+\left(2a\right)^2}\)

\(=3\sqrt{-a}-\sqrt{\left(3+2a\right)^2}\)

\(=3\sqrt{a}-\left|3+2a\right|\)

\(b)1+\frac{3m}{m-2}\sqrt{m^2-4m+4}\)

\(=1+\frac{3m}{m-2}\sqrt{\left(m\right)^2-2.2m+2^2}\)

\(=1+\frac{3m}{m-2}\sqrt{\left(m-2\right)^2}\)

\(=1+\frac{3m}{m-2}|m-2|\)

\(c)4x-\sqrt{9x^2+6x+1}\)

\(=4x-\sqrt{\left(3x\right)^2+2.3x+1}\)

\(=4x-\sqrt{\left(3x+1\right)^2}\)

\(=4x-|3x+1|\)

25 tháng 11 2021

\(\sqrt{4a^2+12a+9}+\sqrt{4a^2-12a+9}\) với \(-\dfrac{3}{2}\le a\le\dfrac{3}{2}\)

\(\sqrt{\left(2a+3\right)^3}+\sqrt{\left(2a-3\right)^3}\)

\(\left|2a+3\right|+\left|2a-3\right|\)

\(2a+3-2a+3\)

\(6\)

28 tháng 4 2020

Ta có : 

\(A=\sqrt{\left(2a-3b\right)^2}+2\sqrt{\left(b-c\right)^2}+\sqrt{\left(2c-3a\right)^2}\)

\(A=\left|2a-3b\right|+2\left|b-c\right|+\left|2c-3a\right|\)

\(\ge3b-2a+2\left(c-b\right)+\left(3a-2c\right)=a+b\ge2\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}3b-2a,c-b,3a-2c\ge0\\a=b=1\end{cases}\Leftrightarrow\hept{\begin{cases}a=b=1\\1\le c\le\frac{3}{2}\end{cases}}}\)

Vậy Min A = 2 khi a = b = 1 và c \(\in\)\(\left[1,\frac{3}{2}\right]\)

24 tháng 10 2018

Ý, B vậy chưa gọn, phải viết thành dị đây mới gọn hẳn, xin nha!

B= 2m-m

Tính các số lẻ tẻ ở ngoài luôn.