K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 4 2018

(Với bài này, trước hết ta cần chia số trong căn cho 100, 10000 ...)

- Ta có: √115 = √100.√1,15 = 10.√1,15

Tra bảng (hàng 1,5 cột 5): 10.√1,15 ≈ 10.1,072 ≈ 10,72

Dùng máy tính: √115 ≈ 10,72380529

Ta thấy sử dụng máy tính cho kết quả chính xác hơn.

Tương tự:

- Tra bảng (hàng 2,3 cột 2): √232 = 10.√2,32 ≈ 10.1,523 ≈ 15,23

Dùng máy tính: √232 ≈ 15,23154621

- Tra bảng (hàng 5,7 cột 1): √571 = 10√5,71 ≈ 10.2,390 ≈ 23,90

Dùng máy tính: √571 ≈ 23,89560629

- Tra bảng: √9691 = 10√96,91

    + Hàng 96, cột 9 ta có: √96,9 ≈ 9,844

    + Tại giao của hàng 96, và cột 1 hiệu chính ta thấy số 0

Nên √96,91 ≈ 9,844 suy ra √9691 ≈ 10.9,844 ≈ 98,44

Dùng máy tính: √9691 ≈ 98,44287684

5 tháng 3 2017

(Với bài này, trước hết ta cần chia số trong căn cho 100, 10000 ...)

- Ta có: √115 = √100.√1,15 = 10.√1,15

Tra bảng (hàng 1,5 cột 5): 10.√1,15 ≈ 10.1,072 ≈ 10,72

Dùng máy tính: √115 ≈ 10,72380529

Ta thấy sử dụng máy tính cho kết quả chính xác hơn.

Tương tự:

- Tra bảng (hàng 2,3 cột 2): √232 = 10.√2,32 ≈ 10.1,523 ≈ 15,23

Dùng máy tính: √232 ≈ 15,23154621

- Tra bảng (hàng 5,7 cột 1): √571 = 10√5,71 ≈ 10.2,390 ≈ 23,90

Dùng máy tính: √571 ≈ 23,89560629

- Tra bảng: √9691 = 10√96,91

    + Hàng 96, cột 9 ta có: √96,9 ≈ 9,844

    + Tại giao của hàng 96, và cột 1 hiệu chính ta thấy số 0

Nên √96,91 ≈ 9,844 suy ra √9691 ≈ 10.9,844 ≈ 98,44

Dùng máy tính: √9691 ≈ 98,44287684

14 tháng 8 2016

Áp dụng bđt \(\frac{\sqrt{a}+\sqrt{b}}{2}< \sqrt{\frac{a+b}{2}}\) (bạn tự c/m) với a = 2003 , b = 2005

được : \(\frac{\sqrt{2003}+\sqrt{2005}}{2}< \sqrt{\frac{2003+2005}{2}}\)

\(\Rightarrow\sqrt{2003}+\sqrt{2005}< 2\sqrt{2004}\)

27 tháng 5 2017

a) \(2\sqrt[3]{3}=\sqrt[3]{2^3}.\sqrt[3]{3}=\sqrt[3]{2^3.3}=\sqrt[3]{24}\)

Ta có : \(24>23\), nên \(\sqrt[3]{24}>\sqrt[3]{23}\)

Vậy \(2\sqrt[3]{3}>\sqrt[3]{23}\)

b) Ta có :

\(11=\sqrt[3]{11^3}=\sqrt[3]{1331}\)

Từ đó suy ra \(33< 3\sqrt[3]{1333}\)

23 tháng 4 2017

Đặt A = \(\sqrt{ }\)2003 + \(\sqrt{ }\)2005 ; B = 2\(\sqrt{ }\)2004
A² = 2003 + 2005 + 2\(\sqrt{ }\)(2003.2005)
= 4008 + 2\(\sqrt{ }\)[(2004-1)(2004+1)]
= 4008 + 2\(\sqrt{ }\)(2004² - 1) < 2.2004 + 2\(\sqrt{ }\)(2004²) = 4.2004 = B²
\(\Rightarrow\) A < B

23 tháng 4 2017

Ta có: \(2\sqrt{2003.2005}=2\sqrt{2004^2-1}< 2\sqrt{2004^2}\)

\(\Rightarrow\) 2003 + \(2\sqrt{2003.2005}+2005\) < 2003 + 4008 + 2005

hay \(\left(\sqrt{2003}+\sqrt{2005}\right)^2< 8016\)

\(\Rightarrow\) \(\sqrt{2003}+\sqrt{2005}\) < 2 \(\sqrt{2004}\)

12 tháng 8 2016

a,  \(1< 2\Rightarrow\sqrt{1}< \sqrt{2}\Rightarrow1+1< \sqrt{2}+1\Rightarrow2< \sqrt{2}+1\)

c, \(4>3=>\sqrt{4}>\sqrt{3}=>\sqrt{4}-1>\sqrt{3}-1\Rightarrow1>\sqrt{3}-1\)

d, \(16>11=>\sqrt{16}>\sqrt{11}\Rightarrow4>\sqrt{11}=>4.\left(-3\right)< \sqrt{11}.\left(-3\right)\)

\(=>-12< -3.\sqrt{11}\) 

 

a: \(x=33^0\)

b: \(x=63^036'\)

c: \(x=48^0\)

14 tháng 8 2016

a/ \(\left(\sqrt{2}+\sqrt{3}\right)^2=2+3+2\sqrt{2.3}=5+2\sqrt{6}=5+\sqrt{24}\)

\(\left(\sqrt{10}\right)^2=10=5+5=5+\sqrt{25}\)

Vì \(\sqrt{24}< \sqrt{25}\)

=>\(\sqrt{2}+\sqrt{3}< \sqrt{10}\)

b/\(\left(\sqrt{3}+2\right)^2=3+4+4\sqrt{3}=7+4\sqrt{3}\)

\(\left(\sqrt{2}+\sqrt{16}\right)^2=2+16+2\sqrt{2.16}=18+4\sqrt{8}\)

=> \(\sqrt{3}+2< \sqrt{2}+\sqrt{16}\)

c/ \(16=\sqrt{16^2}\)

\(\sqrt{15}.\sqrt{17}=\sqrt{15.17}=\sqrt{\left(16-1\right)\left(16+1\right)}=\sqrt{16^2-1}\)

=> \(16>\sqrt{15}.\sqrt{17}\)

d/\(8^2=64=32+32=32+2\sqrt{256}\)

\(\left(\sqrt{15}+\sqrt{17}\right)^2=15+17+2\sqrt{15.17}=32+2\sqrt{255}\)

=> \(8>\sqrt{15}+\sqrt{17}\)

 

 

 

14 tháng 8 2016

khó hiểu quá bn ơi