Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lười làm lắm cứ xét từng khoản là được
Đầu tiên giải bất thứ nhất
Ở bất thứ 2 xét 2 trường hợp
- TH 1: \(m\le0\)
- TH2: \(m>0\)
+ \(\hept{\begin{cases}m-x^2>0\\x+m< 0\end{cases}}\)
+\(\hept{\begin{cases}m-x^2< 0\\x+m>0\end{cases}}\)
a: Để BPT có nghiệm thì \(\left\{{}\begin{matrix}\text{Δ}< =0\\2>0\end{matrix}\right.\Leftrightarrow\left(m-9\right)^2-8\left(m^2+3m+4\right)< =0\)
=>m^2-18m+81-8m^2-24m-32<=0
=>-7m^2-42m+49<=0
=>x<=-7 hoặc x>=1
b: \(\Leftrightarrow3x^2+\left(m+6\right)x-m+5>0\)
Để BPT có nghiệm thì (m+6)^2-12(-m+5)<0
=>m^2+12m+36+12m-60<0
=>m^2+24m-24<0
=>\(-12-2\sqrt{42}< m< -12+2\sqrt{42}\)
Để BPT \(f\left(x\right)>0\) vô nghiệm
\(\Leftrightarrow\left\{{}\begin{matrix}m+2< 0\\\Delta'=m^2-3m\left(m+2\right)\le0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}m< -2\\m^2+3m\ge0\end{matrix}\right.\) \(\Rightarrow m\le-3\)
\(\Rightarrow\) Để BPT có nghiệm thì \(m>-3\)
Để BPT có nghiệm \(\Leftrightarrow\Delta>0\)
\(\Rightarrow\left(m+2\right)^2-4\left(3m^2+1\right)>0\)
\(\Leftrightarrow-11m^2+4m>0\Leftrightarrow0< m< \frac{4}{11}\)
Lời giải:
BPT đã cho vô nghiệm khi $(m+2)x^2-(3m+1)x+m+1>0$ với mọi $x\in\mathbb{R}$
Điều này xảy ra khi \(\left\{\begin{matrix} m+2>0\\ \Delta=(3m+1)^2-4(m+2)(m+1)< 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} m>-2\\ 5m^2-6m-7< 0\end{matrix}\right.\)
\(\Leftrightarrow \frac{3-2\sqrt{11}}{5}< x< \frac{3+2\sqrt{11}}{5}\)