Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(-8< -7\)
\(\Rightarrow\frac{-8}{9}< \frac{-7}{9}\)
Vậy ...........
Ta có:
\(\frac{a}{b}=\frac{a\times\left(b+m\right)}{b\times\left(b+m\right)}=\frac{a\times b+a\times m}{b\times b+b\times m}\)
\(\frac{a+m}{b+m}=\frac{\left(a+m\right)\times b}{\left(b+m\right)\times b}=\frac{a\times b+m\times b}{b\times b+b\times m}\)
vì \(\frac{a}{b}>1\) nên \(a>b\), ta suy ra \(a\times m>b\times m\)
hay \(a\times b+a\times m>a\times b+m\times b\)
hay \(\frac{a\times b+a\times m}{b\times b+b\times m}>\frac{a\times b+m\times b}{b\times b+b\times m}\)
hay \(\frac{a}{b}>\frac{a+m}{b+m}\)
Vì \(\frac{a}{b}>1\)
=> a > b
=> a.m > b.m
=> a.m + a.b > b.m + a.b
=> a.(b + m) > b.(a + m)
=> \(\frac{a}{b}>\frac{a+m}{b+m}\)
\(\frac{\frac{4}{11}-\frac{12}{31}+\frac{16}{59}}{\frac{3}{11}-\frac{9}{31}+\frac{12}{59}}=\frac{4.\left(\frac{1}{11}-\frac{3}{31}+\frac{4}{59}\right)}{3.\left(\frac{1}{11}-\frac{3}{31}+\frac{4}{59}\right)}=\frac{4}{3}\)( vì \(\frac{1}{11}-\frac{3}{31}+\frac{4}{59}\ne0\))
Bài làm:
Ta có: \(\frac{\frac{4}{11}-\frac{12}{31}+\frac{16}{59}}{\frac{3}{11}-\frac{9}{31}+\frac{12}{95}}=\frac{4\left(\frac{1}{11}-\frac{3}{31}+\frac{4}{59}\right)}{3\left(\frac{1}{11}-\frac{3}{31}+\frac{4}{59}\right)}=\frac{4}{3}\)
\(\frac{-3}{11}< \frac{0}{11}\)
hok tốt
^_^
\(-\frac{3}{11}< 0;\frac{0}{11}=0\)
\(\Rightarrow\frac{-3}{11}< \frac{0}{11}\)