Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3 ∈ Q
3 \(\in\) R
3 \(\notin\) I
-2,53 \(\in\) Q
0,2(35) \(\notin\) I
N ⊂ Z
I ⊂ R.
a,3 ∈ Q
b,3 ∈ R
c,3 ∉ I
d,-2,53 ∈ Q
e,0,2(35) ∉ I
g,N ⊂ Z
h,I ⊂ R.
\(-5\notin N\)
\(-5\in Q\)
\(-5\in Z\)
\(-\dfrac{3}{7}\in Q\)
\(-\dfrac{3}{7}\notin Z\)
\(N\subset Q\)
-5 ∈ N
-5 ∈ Z
\(-\dfrac{3}{7}\)∉ Z
-5 ∈ Q
\(-\dfrac{3}{7}\) ∈ Q
N ⊂ Q
a) 9.33.\(\dfrac{1}{81}\) .32 = 32. 33.\(\dfrac{1}{3^4}\) . 32 = 33
b) 4. 25: \(\) (23.\(\dfrac{1}{16}\))= 22. 25: 23. \(\dfrac{1}{2^4}\) = 27: \(\dfrac{1}{2}\) = 27. 2= 28
c) 32. 25. \(\left(\dfrac{2}{3}\right)^2\) = 32. 25. \(\dfrac{2^2}{3^2}\) = 25. 22 = 27
d) \(\left(\dfrac{1}{3}\right)^2\) .\(\dfrac{1}{3}\) . 92 = \(\dfrac{1}{9}.\dfrac{1}{3}\). 92 = \(\dfrac{9}{3}\) = 31
\(A=\dfrac{\sqrt{x}-3}{2}\) có giá trị nguyên nên \(\left(\sqrt{x}-3\right)⋮2.\)
Suy ra \(x\) là số chính phương lẻ.
Vì \(x< 30\) nên \(x\in\left\{1^2;3^2;5^2\right\}\)hay \(x\in\left\{1;9;25\right\}.\)
Để B có giá trị nguyên thì 5 \(⋮\sqrt{x}-1\) \(\Rightarrow\sqrt{x}-1\inƯ\left(5\right)\) \(\Rightarrow\sqrt{x}-1\in\left\{1;-1;5;-5\right\}\)
Ta có bảng:
\(\sqrt{x}-1\) | 1 | -1 | 5 | -5 |
\(x\) | 4 | 0 | 36 | 16 |
Vậy \(x\in\left\{4;0;36;16\right\}\)
Để phân số \(B=\dfrac{5}{\sqrt{x}-1}\) có giá trị nguyên thì: \(5⋮\sqrt{x}-1\\ \Rightarrow\sqrt{x}-1\inƯ\left(5\right)\\ \Rightarrow\sqrt{x}-1\in\left\{\pm1;\pm5\right\}\)
Ta lập bảng sau:
\(\sqrt{x}-1\) | 1 | -1 | 5 | -5 |
\(x\) | 4 | 0 | 36 | 16 |
Vậy \(x\in\left\{4;0;36;16\right\}\).
a)=>x+1<0=>x<-1
x-2 =<0=> x=<2
b)x-2>0=>x>2
x+2/3>=0=>x>=-2/3
a) \(\left(x-\dfrac{1}{2}\right)^2=0\Rightarrow x-\dfrac{1}{2}=0\Rightarrow x=\dfrac{1}{2}\)
b) Vì \(\left(x-2\right)^2=1\Rightarrow\left\{{}\begin{matrix}x-2=2\\x-2=-2\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=4\\x=0\end{matrix}\right.\)
Vậy x = 4 hoặc x = 0
c) Vì \(\left(2.x-1\right)^3=-8\Rightarrow2.x-1=-2\Rightarrow2.x=-1\Rightarrow x=-\dfrac{1}{2}\)
d) Vì \(\left(x+\dfrac{1}{2}\right)^2=\dfrac{1}{16}\Rightarrow\left\{{}\begin{matrix}x+\dfrac{1}{2}=\dfrac{1}{4}\\x+\dfrac{1}{2}=-\dfrac{1}{4}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-\dfrac{1}{4}\\x=-\dfrac{3}{4}\end{matrix}\right.\)
a) \(\left(x-\dfrac{1}{2}\right)^2=0\Leftrightarrow x-\dfrac{1}{2}=0\Leftrightarrow x=\dfrac{1}{2}\)
b) \(\left(x-2\right)^2=1\Leftrightarrow\left\{{}\begin{matrix}x-2=1\\x-2=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\x=1\end{matrix}\right.\)
c) \(\left(2x-1\right)^3=-8\Leftrightarrow2x-1=-2\Leftrightarrow2x=-1\Leftrightarrow x=\dfrac{-1}{2}\) d) \(\left(x+\dfrac{1}{2}\right)^2=\dfrac{1}{16}\Leftrightarrow x+\dfrac{1}{2}=\dfrac{1}{4}\Leftrightarrow x=\dfrac{-1}{4}\)
−2 \(\in\) Q−2........Q 1 \(\in\) R1......R √2 \(\in\) I2......I
− 315 \(\notin\) Z−315......Z √9 \(\in\) N9........N N \(\subset\) R