K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

mk thấy bạn hợp vs tóc  ngắn  lắm đó!!! dễ thw cực

28 tháng 1 2019

mình ko bt mặt bạn nên mình cx ko bt tl sao

20 tháng 1 2019

mình nè

nhớ k

ai đi qua cho

cám ơn nhìu

20 tháng 1 2019

có tui

16 tháng 11 2021

camminh0802@gmail.com

2 tháng 6 2017

Tui có cách khác đây, góp vui thôi thi đừng xài (bí lắm xài cx dc)

Dự đoán dấu "=" xảy khi \(x=y=z=1\) tính được \(P=3\)

Vậy cần chứng minh đó là GTNN của P

Thật vậy, tức là cần chứng minh 

\(P=\frac{x+1}{1+y^2}+\frac{y+1}{1+z^2}+\frac{z+1}{1+x^2}\ge3\)

\(\Leftrightarrow\frac{3+3x}{9+9y^2}+\frac{3+3y}{9+9z^2}+\frac{3+3z}{9+9x^2}\ge1\)

\(\LeftrightarrowΣ\frac{4x+y+z}{\left(x+y+z\right)^2+9y^2}\ge\frac{3}{x+y+z}\)

\(\LeftrightarrowΣ\left(7x^6+30x^5y+21x^5z-6x^4y^2+57x^4z^2+14x^3y^3+75x^4yz-6x^3y^2z+66x^3z^2y-258x^2y^2z\right)\ge0\)

BĐT cuối đúng vì \(Σx^6\geΣx^4y^2\) theo BĐT Rearrangement còn lại đúng theo AM-GM

P/s:dưới chân mỗi Σ bn ghi chữ "cyc" hộ mk nhé

1 tháng 6 2017

Hướng giải nè: 

P/s: đây là cách giải của bản thân mik nên chưa bt nó tối ưu chưa

\(\frac{x+1}{1+y^2}=\left(x+1\right)-\frac{y^2.\left(x+1\right)}{1+y^2}\ge\left(x+1\right)-\frac{y.\left(x+1\right)}{2}=x-\frac{y}{2}+1-\frac{xy}{2}\)

bạn lm tương tự r cộng vào,,đánh giá nốt là ok

10 tháng 1 2019

I. Nội qui tham gia "Giúp tôi giải toán"

1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;

2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.

3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.

Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.

23 tháng 4 2019

bài này h bạn tìm đenta

sau đó cho đenta lớn hơn 0

sau đó đc kq là gì ib cho mik mik ns tiếp cho

23 tháng 4 2019

Hoành độ giao điểm (d) và (P) là nghiệm của pt

\(x^2-mx-3=0\)

Có \(\Delta=m^2+3>0\forall m\)

Nên pt trên có 2 nghiệm phân biệt

GỌi A(x1;y1) và B(x2;y2) là 2 giao điểm (d) và (P)

Theo Vi=ét \(\hept{\begin{cases}x_1+x_2=m\\x_1x_2=-3\end{cases}}\)

VÌ A;B thuộc parabol => y1 = x12     ; y2 = x22

Ta có \(AB=\sqrt{\left(x_1-x_2\right)^2+\left(y_1-y_2\right)^2}\)

\(\Rightarrow AB^2=\left(x_1-x_2\right)^2+\left(y_1-y_2\right)^2\)

               \(=\left(x_1+x_2\right)^2-4x_1x_2+\left(x_1^2-x_2^2\right)^2\)

              \(=m^2+12+\left(x_1+x_2\right)^2\left(x_1-x_2\right)^2\)

                 \(=m^2+12+m^2\left[\left(x_1+x_2\right)^2-4x_1x_2\right]\)

                \(=m^2+12+m^2\left(m^2+12\right)\)

               \(=m^4+13m^2+12\ge0+0+12=12\)

\(\Rightarrow AB\ge\sqrt{12}=2\sqrt{3}\left(Do....AB>0\right)\)

Dấu "=" xảy ra <=> m = 0

Vậy .......