K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
15 tháng 6 2021

Bạn cần có hình minh họa, hoặc có chi tiết bổ sung thêm vào đề để làm bài này!

15 tháng 10 2023

Sửa đề: Chiều dài từ gốc cây đến chỗ cây bị gãy là 3m

loading...

Gọi A là gốc của cái cây

Gọi Clà ngọn của cái cây

Gọi B là chỗ cây bị gãy

Do đó, ta có: \(AB\perp AC\)

Theo đề, ta có: BC=7m; AB=3m

ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(AC=\sqrt{7^2-3^2}=2\sqrt{10}\left(m\right)\simeq6,3\left(m\right)\)

24 tháng 3 2016

Bạn thi gì mà sớm thế

AH
Akai Haruma
Giáo viên
29 tháng 7 2021

Bài 3:

Góc tạo bởi tia sáng với mặt đất là $\alpha$

Ta có:

$\tan \alpha=\frac{7}{4}\Rightarrow \alpha=60,26^0$

AH
Akai Haruma
Giáo viên
29 tháng 7 2021

Bài 4: Không đủ dữ kiện để giải. Bạn xem lại đề.

 

Lời giải:

a) Ta có:

{MEACABACMEABMEA=900{ME∥ACAB⊥AC⇒ME⊥AB⇒∠MEA=900

{MFABABACMFACMFA=900{MF∥ABAB⊥AC⇒MF⊥AC⇒∠MFA=900

Tam giác ABCABC vuông tại AA nên EAF=900∠EAF=900

Tứ giác AFMEAFME có 3 góc MEA=MFA=EAF=900∠MEA=∠MFA=∠EAF=900 nên là hình chữ nhật.

b)

Vì MEAC,MFABME∥AC,MF∥AB nên áp dụng định lý Thales ta có:

MEAC=BMBC;MFAB=CMBCMEAC=BMBC;MFAB=CMBC

Chia hai vế: MEMF.ABAC=BMCM⇒MEMF.ABAC=BMCM

Vì AFMEAFME là hình chữ nhật (cmt) nên để nó là hình vuông cần có ME=MFME=MF

MEMF=1ABAC=BMCM⇔MEMF=1⇔ABAC=BMCM

ABAB+AC=BMBM+CM=BMBC⇔ABAB+AC=BMBM+CM=BMBC

Vậy điểm M nằm trên BC sao cho BMBC=ABAB+ACBMBC=ABAB+AC thì AFMEAFME là hình vuông.