K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 7 2018

45 : 5 = 9

10 tháng 7 2018

Sr bạn nha mình nhầm=)))

14 tháng 1 2017

Bài 1:

\(A=1^3+2^3+...+99^3+100^3\)

\(=\left(1+2+...+100\right)^2\)

\(=\left[\frac{100\cdot\left(100+1\right)}{2}\right]^2\)

\(=5050^2=25502500\)

20 tháng 2 2017

A= 13 + 23 + 33 + ... + 1003

= 1 + 2 + 1.2.3 + 2.3.4 + ... + 100 + 99.100.101

= ( 1 + 2 + 3 + ... + 100) + ( 1.2.3 + 2.3.4 + ... + 99.100.101 )

= 5050 + 101989800

= 101994850

20 tháng 12 2016

\(1.A=\frac{1}{3^2}-\frac{1}{3^4}+\frac{1}{3^6}-\frac{1}{3^8}+...+\frac{1}{3^{98}}-\frac{1}{3^{100}}\)(1)

\(3^2.A=\frac{3^2}{3^2}-\frac{1}{3^2}+\frac{1}{3^4}-\frac{1}{3^6}+...+\frac{1}{3^{96}}-\frac{1}{3^{98}}\)(2)

cộng lai (phân giữa triệt tiêu hết)

\(\left(1+9\right)A=1-\frac{1}{3^{100}}< 1\)

=>\(10A< 1\Rightarrow A< 0,1\)

A=-1++(-1)+..+-(1) có 50 số -1

=>A=-1x50=-50

B=(1-2-3+4)+(5-6-7+8)+...+(97-98-99+100)

B=0+0+0+..+0

B=0

C=2^100-(2^99+2^98+...+1)

C=2^100-(2^100-1)

C=1

27 tháng 9 2020

A = 2100- 299 + 298 - 297 + ... + 22 - 2

=> 2A =  2101 - 2100 + 299 - 298 + ... + 23 - 22 

Khi đó 2A  + A = (2101 - 2100 + 299 - 298 + ... + 23 - 22) + (2100- 299 + 298 - 297 + ... + 22 - 2)

=> 3A = 2101 - 2

=> \(A=\frac{2^{201}-2}{3}\)

b) Ta có B = 3100- 399 + 398 - 397 + ... + 32 - 3 + 1

=> 3B = 3101 - 3100 + 399 - 398  + ... + 33 - 32 + 3

Khi đó 3B + B = (3101 - 3100 + 399 - 398  + ... + 33 - 32 + 3) + (3100- 399 + 398 - 397 + ... + 32 - 3 + 1)

=> 4B = 3101 + 1

=> B = \(\frac{3^{101}+1}{4}\)

27 tháng 9 2020

a) \(A=2^{100}-2^{99}+2^{98}-2^{97}+...+2^2-2\)

=> \(2A=2^{101}-2^{100}+2^{99}-2^{98}+...+2^3-2^2\)

=> \(2A+A=\left(2^{101}-2^{100}+...-2^2\right)+\left(2^{100}-2^{99}+...-2\right)\)

<=> \(3A=2^{101}-2\)

=> \(A=\frac{2^{101}-2}{3}\)

b) \(B=3^{100}-3^{99}+3^{98}-3^{97}+...+3^2-3+1\)

=> \(3A=3^{101}-3^{100}+3^{99}-3^{98}+...+3^3-3^2+3\)

=> \(3A+A=\left(3^{101}-3^{100}+...+3\right)+\left(3^{100}-3^{99}+...+1\right)\)

<=> \(4A=3^{101}+1\)

=> \(A=\frac{3^{101}+1}{4}\)

2 tháng 8 2017

a, \(A=3^{100}-3^{99}+3^{98}-3^{97}+...+3^2-3+1\)

\(\Rightarrow3A=3^{101}-3^{100}+3^{99}-3^{98}+...+3^3-3^2+3\)

\(\Rightarrow4A=3^{101}+1\)

\(\Rightarrow A=\dfrac{3^{101}+1}{4}\)

Vậy...

b, tương tự

29 tháng 9 2017

3A=31+32+33+...+398+399+3100+3101

3A-A=3101-1

Vậy 2A=3101-1

25 tháng 5 2015

Áp dụng công thức: (n-2)n(n+2) = n3 - 4n => n = (n-2).n.(n+2) + 4n

b18) Áp dụng: ta có: 23 = 4.2; 43 = 2.4.6 + 4.4 ; 63 = 4.6.8 + 4.6; ...; 100 = 98.100.102 + 4.100

=> A = 4.2 + 2.4.6 + 4.4 + 4.6.8 + 4.6 +...+ 98.100.102 + 4.100

= (2.4.6 + 4.6.8 + 6.8.10 +....+ 98.100.102 ) + 4.(2 + 4 + 6 + ...+ 100) = B + 4.C

Tính B =  2.4.6 + 4.6.8 + 6.8.10 +....+ 98.100.102 

=> 8.B = 2.4.6.8 + 4.6.8.8 + 6.8.10.8 +...+ 98.100.102.8

= 2.4.6.8 + 4.6.8 (10 - 2) + 6.8.10.(12 - 4) +...+ 98.100.102.(104 - 96)

= 2.4.6.8 + 4.6.8.10 - 2.4.6.8 + 6.8.10.12 - 4.6.8.10 +...+ 98.100.102.104 - 96.98.100.102

= (2.4.6.8 + 4.6.8.10 + 6.8.10.12 +...+ 98.100.102.104) - (2.4.6.8 + 4.6.8.10 +...+ 96.98.100.102)

= 98.100.102.104

=> B =98.100.102.104 : 8 = 12 994 800

C = 2+ 4+ 6 +..+100 = (2+100) . 50 : 2 = 2550

Vậy A = B +4C = 12 994 800 + 4. 2550 = 13 005 000