\(x^2-6xy^2-2y+12\)

D=\(2x^2-4xy+4y^2-2x+5\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 10 2020

Đề là gì ạ ?

5 tháng 10 2020

tim MIN cua 2 da thuc

31 tháng 7 2017

2C=4x^2+2x-10=((2x)^2+4x\(\dfrac{1}{2}\)+\(\dfrac{1}{4}\))-\(\dfrac{41}{4}\)

=\(\left(2x+\dfrac{1}{2}\right)^2\)-41/4\(\ge\dfrac{-41}{4}\)

=> C\(\ge\dfrac{-41}{8}\)

Vậy min C = \(\dfrac{-41}{8}\)khi x=\(\dfrac{-1}{4}\)

31 tháng 7 2017

\(4A=4x^2+44y^2+24xy-8y+20=\left(2x\right)^2+2.2x.6y+\left(6y\right)^2+8y^2-8y+20=\left(2x+6y\right)^2+2\left(4y^2-4y+1\right)+18=\left(2x+6y\right)^2+2\left(2y-1\right)^2+18\ge18\)

7 tháng 8 2017

Bài 2:

a, \(x^2-6x+10=x^2-6x+9+1\)

\(=\left(x-3\right)^2+1\ge1>0\)

\(\Rightarrowđpcm\)

b, \(x^2-4xy+4y^2+1=\left(x-2y\right)^2+1>0\)

\(\Rightarrowđpcm\)

c, \(x^2-4x+7=x^2-4x+4+3\)

\(=\left(x-2\right)^2+3\ge3\)

\(\Rightarrowđpcm\)

d, \(x^2+y^2-2x+4y+5\)

\(=x^2-2x+1+y^2+4y+4\)

\(=\left(x-1\right)^2+\left(y+2\right)^2\ge0\)

\(\Rightarrowđpcm\)

10 tháng 8 2017

Ép người quá đáng >.<

Bài 1:

a, \(-\left(2x^2+2x+1\right)\left(2x^2-2x+1\right)+\left(2x^2+1\right)\)

\(=-\left(4x^4-4x^3+2x^2+4x^3-4x^2+2x+2x^2-2x+1\right)+2x^2+1\)

\(=-\left(4x^4+1\right)+2x^2+1=-4x^4+2x^2\)

b, \(\left(x^2+x+2\right)^2+\left(x-1\right)^2-2\left(x^2+x+2\right)\left(x-1\right)\)

\(=\left(x^2+x+2-x+1\right)^2=\left(x^2+3\right)^2\)

d, \(-125x^3+225x^2-135x+27\)

\(=-\left(125x^3-225x^2+135x-27\right)\)

\(=-\left(125x^3-75x^2-150x^2+90x+45x-27\right)\)

\(=-\left[25x^2\left(5x-3\right)-30x\left(5x-3\right)+9\left(5x-3\right)\right]\)

\(=-\left[\left(5x-3\right)\left(25x^2-15x-15x+9\right)\right]\)

\(=-\left(5x-3\right)^3\)

15 tháng 12 2018

\(\frac{x}{x-2y}+\frac{x}{x+2y}+\frac{4xy}{4y^2-x^2}\)

\(=\frac{x\left(x+2y\right)}{\left(x-2y\right)\left(x+2y\right)}+\frac{x\left(x-2y\right)}{\left(x-2y\right)\left(x+2y\right)}+\frac{-4xy}{\left(x-2y\right)\left(x+2y\right)}\)

\(=\frac{x^2+2xy+x^2-2xy-4xy}{\left(x-2y\right)\left(x+2y\right)}\)

\(=\frac{2x^2-4xy}{\left(x-2y\right)\left(x+2y\right)}\)

2 tháng 7 2017

a) \(25.\left(x-1\right)^2-16\left(x+y\right)^2\)

= \(\left(5x-5\right)^2-\left(4x+y\right)^2\)

= \(\left(5x-5-4x-y\right)\left(5x-5+4x+y\right)\)

= \(\left(x-y-5\right)\left(9x+y-5\right)\)

b) \(x^3+3x^2+3x+1-27z^3\)

= \(\left(x+1\right)^3-27z^3\)

= \(\left(x+1-3z\right)\left(x^2+x.3z+9z^2\right)\)

c) \(x^2-2xy+y^2-xz+yz\)

= \(\left(x-y\right)^2-z\left(x-y\right)\)

= \(\left(x-y\right)\left(x-y-z\right)\)

d) \(a^3x-ab+b-x\)

= \(x\left(a^3-1\right)-b\left(a-1\right)\)

= \(x\left(a-1\right)\left(a^2+a+1\right)-b\left(a-1\right)\)

= \(\left(a-1\right)\left(a^2x+ax+x-b\right)\)

f) \(x^2+2x-4y^2-4y\)

= \(x^2+2x+1-\left(4y^2+4y+1\right)\)

= \(\left(x+1\right)^2-\left(2y+1\right)^2\)

= \(\left(x+1-2y-1\right)\left(x+1+2y+1\right)\)

= \(\left(x-2y\right)\left(x+2y+2\right)\)

g) \(xy-4+2x-2y\)

= \(y\left(x-2\right)-2\left(x-2\right)\)

= \(\left(x-2\right)\left(y-2\right)\)

a: \(=\left(5x-5\right)^2-\left(4x-4y\right)^2\)

\(=\left(5x-5-4x+4y\right)\cdot\left(5x-5+4x-4y\right)\)

\(=\left(x+4y-5\right)\left(9x-4y-5\right)\)

b: \(=\left(x+1\right)^3-\left(3z\right)^3\)

\(=\left(x+1-3z\right)\left(x^2+2x+1+3xz+3z+9z^2\right)\)

c: \(=\left(x-y\right)^2-z\left(x-y\right)\)

\(=\left(x-y\right)\left(x-y-z\right)\)

d: \(=x\left(a^3-1\right)-b\left(a-1\right)\)

\(=x\left(a-1\right)\cdot\left(a^2+a+1\right)-b\left(a-1\right)\)

\(=\left(a-1\right)\left(a^2x+ax+1-b\right)\)

3 tháng 7 2018

Câu c) Sử dụng hằng đẳng thức+Đặt biến phụ

Ta có: \(x^2+2xy+y^2-x-y-12\)

\(=\left(x+y\right)^2-\left(x+y\right)-12\)

\(=\left(x+y\right)\left(x+y-1\right)-12\)

Đặt: \(x+y=t\)

\(=t\left(t-1\right)-12\)

\(=t^2-t-12\)

\(=t^2-t-9-3\)

\(=\left(t^2-3^2\right)-\left(t+3\right)\)

\(=\left(t+3\right)\left(t-3\right)-\left(t+3\right)\)

\(=\left(t+3\right)\left(t-4\right)\)Bn tự thế vào nhá. (Bài c) tương tự bài a))

Câu d) Đặt biến phụ

Ta có: \(\left(5x^2-2x\right)^2+2x-5x^2-6\)

\(=\left(5x^2-2x\right)^2-5x^2+2x-6\)

\(=\left(5x^2-2x\right)^2-\left(5x^2-2x\right)-6\)

\(=\left(5x^2-2x\right)\left(5x^2-2x-1\right)-6\)

Đặt \(t=5x^2-2x\)

\(=t\left(t-1\right)-6\)

\(=t^2-t-6\)

\(=t^2-t-9+3\)

\(=\left(t^2-3^2\right)-\left(t-3\right)\)

\(=\left(t-3\right)\left(t+3\right)-\left(t-3\right)\)

\(=\left(t-3\right)\left(t+2\right)\)Bn tự thế t vào 

3 tháng 7 2018

Câu a) Sử dụng phương pháp đặt biến phụ+hằng đẳng thức

Ta có: \(\left(2x^2+x-2\right)\left(2x^2+x-3\right)-12\)

Đặt: \(t=2x^2+x-2\)

\(=t\left(t-1\right)-12\)

\(=t^2-t-12=t^2-t-9-3\)

\(=\left(t^2-3^2\right)-\left(t+3\right)\)

\(\left(t+3\right)\left(t-3\right)-\left(t+3\right)=\left(t+3\right)\left(t-4\right)\)

Thay t vào: \(\left(2x^2+x+1\right)\left(2x^2+x-6\right)\)

Câu b) Sử dụng hằng đẳng thức+ đặt biến phụ 

Ta có: \(x^2+9y^2-9y-3x+6xy+2\)

\(=\left(x^2+6xy+9y^2\right)-\left(9y+3x\right)+2\)

\(=\left(x+3y\right)^2-3\left(3y+x\right)+2\)

\(=\left(x+3y\right)\left(x+3y-3\right)+2\)

Đặt \(t=x+3y\)

\(=t\left(t-3\right)+2\)

\(=t^2-3t+2\)

\(=\left(t^2-4\right)-\left(3t-6\right)\)

\(=\left(t-2\right)\left(t+2\right)-3\left(t-2\right)\)

\(=\left(t-2\right)\left(t-1\right)\)Khúc sau bn tự thế vào

Còn mấy bài sau đang nghiên cứu

8 tháng 11 2018

a) \(4x\left(x-5\right)+3y\left(x-5\right)\)

\(=\left(x-5\right)\left(4x+3y\right)\)

b) \(x^2-2x-4y^2-4y\)

\(=\left[x^2-\left(2y\right)^2\right]-\left(2x+4y\right)\)

\(=\left(x-2y\right)\left(x+2y\right)-2\left(x+2y\right)\)

\(=\left(x+2y\right)\left(x-2y-2\right)\)

c) \(x^2+x-y^2+y\)

\(=\left(x^2-y^2\right)+\left(x+y\right)\)

\(=\left(x-y\right)\left(x+y\right)+\left(x+y\right)\)

\(=\left(x+y\right)\left(x-y+1\right)\)

d) \(3x^2+3y^2-6xy-12\)

\(=3\left(x^2+y^2-2xy-4\right)\)

\(=3\left[\left(x-y\right)^2-2^2\right]\)

\(=3\left(x-y-2\right)\left(x-y+2\right)\)

8 tháng 11 2018

câu này nx

3x+3y-\(x^2\)-2xy-\(y^2\)

25 tháng 8 2017

a, \(A_{\left(x\right)}=2x^2+2xy+y^2-2x+2y+2\)

\(=\left(x^2+y^2+1+2xy+2x+2y\right)+\left(x^2-4x+4\right)-3\)

\(=\left(x+y+1\right)^2+\left(x-2\right)^2-3\ge-3\) hay \(A_{\left(x\right)}\ge-3\)

Dấu ''='' xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}\left(x+y+1\right)^2=0\\\left(x-2\right)^2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x+y+1=0\\x-2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}y=-3\\x=2\end{matrix}\right.\)

Vậy \(minA_{\left(x\right)}=-3\) khi x=-3; y=2

b, \(B_{\left(x\right)}=x^2-4xy+5y^2+10x-22y+28\)

\(=\left(x^2+4y^2+25-4xy+10x-20y\right)+\left(y^2-2y+1\right)+2\)

\(=\left(x-2y+5\right)^2+\left(y-1\right)^2+2\ge2\Leftrightarrow B_{\left(x\right)}\ge2\)

Dấu ''='' xảy ra khi \(\left\{{}\begin{matrix}\left(x-2y+5\right)^2=0\\\left(y-1\right)^2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x-2y+5=0\\y-1=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-3\\y=1\end{matrix}\right.\)

Vậy \(minB_{\left(x\right)}=2\Leftrightarrow x=-3;y=1\)

c, \(C_{\left(x\right)}=x^2-10xy+26y^2+14x-76y+59\)

\(=\left(x^2+25y^2+49-10xy+14x-70y\right)+\left(y^2-6y+9\right)+1\)

\(=\left(x-5y+7\right)^2+\left(y-3\right)^2+1\ge1\Leftrightarrow C_{\left(x\right)}\ge1\)

Dấu ''='' xảy ra khi \(\left\{{}\begin{matrix}\left(x-5y+7\right)^2=0\\\left(y-3\right)^2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x-5y+7=0\\y-3=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=8\\y=3\end{matrix}\right.\)

Vậy \(minC_{\left(x\right)}=1\Leftrightarrow x=8;y=3\)

d, \(D_{\left(x\right)}=4x^2-4xy+2y^2-20x-4y+174\)

\(=\left(4x^2+y^2+25-4xy-20x+10y\right)+\left(y-14y+49\right)+74\)

\(=\left(2x-y-5\right)^2+\left(y-7\right)^2+74\ge74\Leftrightarrow D_{\left(x\right)}\ge74\)

Dấu ''='' xảy ra khi \(\left\{{}\begin{matrix}\left(2x-y-5\right)^2=0\\\left(y-7\right)^2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}2x-y-5=0\\y-7=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=6\\y=7\end{matrix}\right.\)

Vậy \(minD_{\left(x\right)}=74\Leftrightarrow x=6;y=7\)

e, \(E_{\left(x\right)}=x^2-2x+y^2+4y+5\)

\(=\left(x^2-2x+1\right)+\left(y^2+4y+4\right)=\left(x-1\right)^2+\left(y+2\right)^2\ge0\)

Dấu ''='' xảy ra khi \(\left\{{}\begin{matrix}\left(x-1\right)^2=0\\\left(y+2\right)^2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x-1=0\\y+2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\)

Vậy \(minE_{\left(x\right)}=0\Leftrightarrow x=1;y=-2\)

25 tháng 8 2017

bạn ơi! Sao cái chỗ A(x) =(x+y+1)2+(x-2)2-3 mà chuyển sang lại là -3 v