K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
VA
3
Do tổng 3 số là một số lẻ nên 3 số gồm: 2 chẵn + 1 lẻ hoặc 3 lẻ
+TH1: 2 số chẵn và 1 số lẻ. Do vai trò của a, b, c là như nhau nên ta giả sử \(a=2x;\text{ }b=2y;\text{ }c=2z+1\) (a và b chẵn; c lẻ).
\(2007=\left(2x\right)^2+\left(2y\right)^2+\left(2z+1\right)^2=4x^2+4y^2+4z^2+4z+1\)
\(\Rightarrow4\left(x^2+y^2+z^2+z\right)=2006\)
Vế trái chia hết cho 6 mà vế phải không chia hết cho 6 => không tồn tại các số nguyên x, y, z => không tồn tại các số nguyên a, b, c.
+TH2: 3 số đều lẻ.
Giả sử \(a=2x+1;b=2y+1;c=2z+1\)
\(2007=\left(2x+1\right)^2+\left(2y+1\right)^2+\left(2z+1\right)^2=4x^2+4x+1+4y^2+4y+1+4z^2+4z+1\)
\(\Rightarrow4\left(x^2+x+y^2+y+z^2+z\right)=2004\)
\(\Rightarrow x\left(x+1\right)+y\left(y+1\right)+z\left(z+1\right)=501\)
+Do x và x+1 là 2 số nguyên liên tiếp nên 1 trong 2 số là số chẵn => tích của chúng là số chẵn hay x(x+1) chẵn.
Tương tự y(y+1) và z(z+1) đều chẵn
=> Vế trái chẵn và vế phải = 501 là một số lẻ
=> không tồn tại x, y, z nguyên.
=> không tồn tại các số nguyên a, b, c thỏa mãn.
Vậy: không tồn tại các số nguyên a, b, c thỏa \(a^2+b^2+c^2=2007\)
Giải 2x2 2, 2007 2 nên y2 lẻ y = 2k + 1. Ta có 2x2 + 4k2 + 4k = 2006. Vì 2006 chia 4 dư 2 nên 2x2 4 tức x lẻ, x = 2h + 1. Từ đó 2(2h + 1)2 + 4k2 + 4k = 2006
8h2 + 8h + 4k2 + 4k = 2004. Sốø 2004 8 mà 8h2 + 8h + 4k2 + 4k 8. Vô lí. Vậy không tồn tại các số nguyên x, y thỏa mãn 2x2 + y2 = 2007.
violet.vn/toanlyttdd/present/showprint/entry_id/4317509