K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 2 2021

a) Gọi phương trình đường thẳng cần lập là \(y=ax+b\left(d_1\right)\).

Để \(\left(d_1\right)\)//\(\left(d\right)\) thì \(a=2\) \(\Rightarrow\left(d_1\right):y=2x+b\).

Xét phương trình hoành độ giao điểm của \(\left(d_1\right)\) và \(\left(d'\right)\):

\(2x+b=3x-2\Leftrightarrow x=b+2\).

Hai đường thẳng này cắt nhau tại điểm có hoành độ là 2 

\(\Leftrightarrow b+2=2\Leftrightarrow b=0\).

Vậy phương trình đường thẳng cần lập là \(\left(d_1\right):y=2x\).

b) Gọi phương trình đường thẳng cần lập là \(y=ax+b\left(d_2\right)\).

\(\left(d_2\right)\perp\left(d'\right)\Leftrightarrow3a=-1\Leftrightarrow a=-\dfrac{1}{3}\)

\(\Rightarrow\left(d_2\right):y=-\dfrac{1}{3}x+b\).

Xét phương trình hoành độ giao điểm của \(\left(d_2\right)\) và \(\left(d\right)\):

\(2x-3=-\dfrac{1}{3}x+b\Leftrightarrow\dfrac{7}{3}x=b+3\Leftrightarrow x=\dfrac{3b+9}{7}\)

\(\Rightarrow y=2x-3=\dfrac{6b-3}{7}\).

Hai đường thẳng này cắt nhau tại điểm có tung độ bằng -1 

\(\Leftrightarrow\dfrac{6b-3}{7}=-1\Leftrightarrow6b-3=-7\Leftrightarrow b=-\dfrac{2}{3}\).

Vậy phương trình đường thẳng cần lập là \(\left(d_2\right):y=-\dfrac{1}{3}x-\dfrac{2}{3}\).

 

19 tháng 5 2021

1. ta có pt đường thẳng (d) có dạng y=ax+b

vì  phương trình đường thẳng (d) song song với đường thẳng (∆) y=x+2 

=>\(\left\{{}\begin{matrix}a=1\\b\ne2\end{matrix}\right.\)

vì  phương trình đường thẳng (d) cắt (P) y=x² tại điểm có hoành độ bằng -12( cái kia bạn viết là -12 à?)

=>x=-12

thay x=-12 vào pt (P) ta được: y=(-12)^2=144

thay x=-12,y=144, a=1 vòa pt (d) ta có:

144=-12+b=>b=156

=>pt (d) dạng y=x+156

 

 

 

19 tháng 5 2021

2. pt (d) có dạng y=ax+b

vì  phương trình đường thẳng (d) vuông góc với đường thẳng (∆) y=x+1

=> a.a'=-1<=>a.1=-1=>a=-1

vì phương trình đường thẳng (d) cắt (P) y=x² tại điểm có tung độ bằng 9 

=>y=9=>x=+-3

với x=3,y=9,a=-1 thay vào pt(d) ta được:

9=-3+b=>b=12=>pt(d): y=-x+12

với x=-3,y=9,a=-1 thay vào pt (d) 

=>9=3+b=>b=6=>pt(d) dạng: y=x+6

 

 

28 tháng 8 2018

Gọi phương trình đường thẳng d cần tìm là  y   =   a x   +   b   ( a   ≠   0 )

Vì d song song với đường thẳng  y   =   − 2 x   +   1   n ê n   a   =   − 2 ;   b   ≠   1   ⇒   y   =   − 2 x   +   b

Giao điểm của đường thẳng d với trục hoành có tọa độ (3; 0)

Thay  x   =   3 ;   y   =   0 vào phương trình đường thẳng d ta được

− 2 .   3   +   b   =   0   ⇔   b   =   6   ( T M )   ⇒   y   =   − 2 x   +   6

Vậy d:  y   =   − 2 x   +   6

Đáp án cần chọn là: A

8 tháng 7 2021

a) Vì (d) song song với đường thẳng \(y=-2x+2003\Rightarrow\left\{{}\begin{matrix}a=-2\\b\ne2003\end{matrix}\right.\)

\(\Rightarrow\left(d\right):y=-2x+b\)

Vì (d) cắt trục hoành tại điểm có hoành độ = 1

\(\Rightarrow\) tọa độ điểm đó là \(\left(1;0\right)\)

\(\Rightarrow1=b\Rightarrow\left(d\right):y=-2x+1\)

b) pt hoành độ giao điểm: \(-\dfrac{1}{2}x^2=-2x+2\Rightarrow\dfrac{1}{2}x^2-2x+2=0\)

\(\Rightarrow x^2-4x+4=0\Rightarrow\left(x-2\right)^2=0\Rightarrow x=2\Rightarrow y=-\dfrac{1}{2}.2^2=-2\)

\(\Rightarrow\) tọa độ giao điểm là \(\left(2;-2\right)\)

Vì (d1)//(d) nên \(\left\{{}\begin{matrix}a=3\\b\ne-4\end{matrix}\right.\)

Vậy: (d1): y=3x+b

Thay x=-2 vào (P), ta được:

\(y=\dfrac{1}{2}\cdot\left(-2\right)^2=\dfrac{1}{2}\cdot4=2\)

Thay x=-2 và y=2 vào (d1), ta được:

\(3\cdot\left(-2\right)+b=2\)

\(\Leftrightarrow b=8\)(thỏa ĐK)

Vậy: (d1): y=3x+8

30 tháng 6 2021

để \(\left(d1\right)\) sogn song với \(\left(d\right)\)

\(< =>\left\{{}\begin{matrix}a=3\\b\ne-4\end{matrix}\right.\)

để (d1) cắt (P) tại A có hoành độ -2\(=>x=-2\)

\(=>\dfrac{1}{2}x^2=3x+b< =>\dfrac{1}{2}\left(-2\right)^2=3\left(-2\right)+b=>b=8\left(tm\right)\) 

=>\(\left(d1\right):y=3x+8\)

2 tháng 2 2017

c) Do d' // d nên phương trình của d' có dạng: y = -x + b (b ≠ 2)

Gọi A là giao điểm của d' và (P). A có hoành độ -1 ⇒ tung độ của A là 1

Do A (-1; 1) nên tọa độ của A thỏa mãn phương trình đường thẳng d'

⇒ 1 = -(-1) + b ⇒ b = 0

⇒ Phương trình đường thẳng d' là y = -x.