Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=1+3+3^2+...+3^{2016}\)
\(3A=3.\left(1+3+3^2+...+3^{2016}\right)\)
\(3A=3+3^2+3^3+...+3^{2017}\)
\(3A-A=\left(3+3^2+3^3+...+3^{2017}\right)-\left(1+3+3^2+...+3^{2016}\right)\)
\(2A=3^{2017}-1\)
\(A=\left(3^{2017}-1\right):2\)
\(B=1+6+6^2+...+6^{200}\)
\(6B=6.\left(1+6+6^2+...+6^{200}\right)\)
\(6B=6+6^2+6^3+...+6^{201}\)
\(6B-B=\left(6+6^2+6^3+...+3^{201}\right)-\left(1+6+6^2+...+6^{200}\right)\)
\(5B=6^{201}-1\)
\(B=\left(6^{201}-1\right):5\)
\(3^{x-2}.4=324\)
\(3^{x-2}=324:4\)
\(3^{x-2}=81\)
\(3^{x-2}=3^4\)
\(x-2=4\)
\(x=4+2\)
\(x=6\)
\(2x< 20\)
\(\Rightarrow x=\left\{0;1;2;3;4;5;6;7;8;9\right\}\)
a) Nếu \(\frac{1}{2}x\ge0\Rightarrow x\ge0\) thì \(\left|\frac{1}{2}x\right|=3-2x\Rightarrow\frac{1}{2}x=3-2x\Rightarrow\frac{5}{2}x=3\Rightarrow x=\frac{6}{5}\) (nhận)
Nếu \(\frac{1}{2}x< 0\Rightarrow x< 0\) thì \(\left|\frac{1}{2}x\right|=3-2x\Rightarrow-\frac{1}{2}x=3-2x\Rightarrow\frac{3}{2}x=3\Rightarrow x=2\) (loại)
Vậy x = 6/5
b) Nếu \(x-1\ge0\Rightarrow x\ge1\) thì \(\left|x-1\right|=3x+2\Rightarrow x-1=3x+2\Rightarrow-2x=3\Rightarrow x=\frac{-2}{3}\) (loại)
Nếu \(x-1< 0\Rightarrow x< 1\) thì \(\left|x-1\right|=3x+2\Rightarrow-\left(x-1\right)=3x+2\Rightarrow-x+1=3x+2\Rightarrow-4x=1\Rightarrow x=\frac{-1}{4}\) (nhận)
Vậy x = -1/4
=1/1.5 + 1/5.8 + 1/8.11 + 1/11.14 + 1/14.17 + 1/17.20
=<1-1/5> + <1/5-1/8> + <1/8-1/11> + <1/11-1/14> + <1/14-1/17> + <1/17-1/20>
=1-1/20
=19/20
BAN NEN SUA 1/4 THANH 1/5 MOI TIM DUOC
CAC BAN NHO NHIEU NHE
ta có:
\(\left(7\frac{1}{2}.8\frac{3}{70}+8\frac{3}{70}.\frac{9}{4}+\frac{19}{4}.8\frac{3}{70}+5\frac{1}{2}.8\frac{3}{70}\right):x=1126\)
\(8\frac{3}{70}\left(7\frac{1}{2}+\frac{9}{4}+\frac{19}{4}+5\frac{1}{2}\right):x=1126\)
\(\frac{563}{70}.\left(\frac{15}{2}+7+\frac{11}{2}\right):x=1126\)
\(\frac{563}{70}.20:x=1126\)
\(\frac{1126}{70}:x=1126\)
\(=>x=\frac{1126}{7}:1126\)
\(=>x=\frac{1}{7}\)
cho mình nha các bạn.
Xét phần mẫu số: \(\frac{2016}{1}\) = 2016 = 1 + 1 + 1 +...+ 1 (2016 số hạng 1)
Ta có: (1+\(\frac{2015}{2}\)) + (1+\(\frac{2014}{3}\)) + (1+\(\frac{2013}{4}\)) + ... + (1+\(\frac{1}{2016}\))
= \(\frac{2017}{2}\) + \(\frac{2017}{3}\) + \(\frac{2017}{4}\) + ... + \(\frac{2017}{2016}\)
= 2016 x (\(\frac{1}{2}\)+\(\frac{1}{3}\)+\(\frac{1}{4}\)+...+\(\frac{1}{2016}\))
=> \(\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2016}}{2016x\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2016}\right)}\)
Rút \(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2016}\) ở cả tử số và mẫu số, ta còn lại \(\frac{1}{2016}\)
Vậy \(\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2016}}{\frac{2016}{1}+\frac{2015}{2}+\frac{2014}{3}+...+\frac{1}{2016}}\) = \(\frac{1}{2016}\)
Cái này dễ à !!!
để Giải cho ngen
đây là toán lớp 7 mà
a=1/2
b=-1