K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 8 2017

Để làm j vậy bạn ơi?

20 tháng 9 2021

hỏi chi vậy bạn êy...

16 tháng 8 2017

Phân tích thành nhân tử 

a)x8 +14x4 +1                                       b) x8 +98x4 +1

Thích thì bài đây

16 tháng 8 2017

Dạng này là hệ số bất định 

gửi nhầm 

23 tháng 2 2019

mn kb nha!!

23 tháng 2 2019

Mẹo ??? 

3 tháng 1 2017

đùa nhau à cái này làm sao pt dc

3 tháng 1 2017

Gửi Thắng Nguyễn: Mình không biết tại sao lại ko phân tích được?

e) Ta có: \(x^3-4x-14x\left(x-2\right)=0\)

\(\Leftrightarrow x\left(x-2\right)\left(x+2\right)-14x\left(x-2\right)=0\)

\(\Leftrightarrow x\left(x-2\right)\left(x+2-14\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\\x=12\end{matrix}\right.\)

5 tháng 8 2021

e)x3-4x+14x(x-2)=0

⇔ x(x2-4)+14x(x-2)=0

⇔ x(x-2)(x+2)+14x(x-2)=0

⇔ (x-2)(x2+2x+14x)=0

⇔ x(x-2)(x+16)=0

\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\x-2=0\\x+16=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\x=2\\x=-16\end{matrix}\right.\)

g)x2(x+1)-x(x+1)+x(x-1)=0

⇔ (x+1)(x2-x)+x(x-1)=0

⇔ x(x+1)(x-1)+x(x-1)=0

⇔ x(x-1)(x+2)=0

\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\x-1=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\x=1\\x=-2\end{matrix}\right.\)

Cách 1 : Nhẩm nghiệm của đa thức 

Cách 2 : Dùng sơ đồ hocle

Cách 3 : Dùng hằng đẳng thức 

Cách 4 : Liên hợp 

24 tháng 7 2017

Bạn nói cụ thể dùm mình được không? Mình vẫn chưa hiểu. hay bạn cho thêm ví dụ về cách tính đy. Hay ví dụ nào để mình dễ hiểu hơn được không? o0o I am a studious person o0o

23 tháng 11 2016

Để phân tích đa thức thành nhân tử ta có 4 cách:

1. Dùng phương pháp đặt nhân tử chung: Với phương pháp này, bn phải tìm ra nhân tử chung giữa các hạng tử, sau đó đặt nhân tử chung ra ngoài, phần còn lại của đa thức bn cho vào ngoặc riêng để tạo thành 2 hoặc nhiều thừa số nhân vs nhau.

2. Dùng phương pháp dùng hằng đẳng thức: nếu muốn làm tốt các bài tập này bn phải thuộc 7 hằng đẳng thức trong đại số, sau đó tuỳ bài mà tìm hằng đẳng thức tương ứng để khai triển hoặc thu gọn. Cac hằng đẳng thức thường gặp là hằng đẳng thức số 1,2 và 3.

3. Dùng phương pháp nhóm hạng tử: ta nhóm hạng tử trong các bài tập này để xuất hiện nhân tử chung hoặc hằng đẳng thức, sau đó cứ theo như 2 phương pháp đầu mà giải quyết bài tập nhé.

4. Dùng phối hợp nhiều phương pháp: đây là những dạng bài tập nâng cao hơn, đòi hỏi phải kết hợp nhiều phương pháp, khi làm bài tập này, chúng ta phải ưu tiên cho phương pháp đặt nhân tử chung đầu tiên, sau đó là hằng đẳng thức hoặc nhóm hạng tử.

Chúc bn học tốt! ^^

23 tháng 11 2016

Cảm ơn bạn nhiều