\(\frac{x}{y}\)+\(\frac{y}{z}\)+
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 8 2017

b2 \(\sqrt{x-1}+\sqrt{y-1}+\sqrt{z-1}=\sqrt{x}.\sqrt{1-\frac{1}{x}}+\sqrt{y}.\)\(\sqrt{y}.\sqrt{1-\frac{1}{y}}+\sqrt{z}.\sqrt{1-\frac{1}{z}}\)rồi dung bunhia là xong

5 tháng 8 2017

A= \(\frac{1}{a^3}\)\(\frac{1}{b^3}\)\(\frac{1}{c^3}\)\(\frac{ab^2}{c^3}\)\(\frac{bc^2}{a^3}\)\(\frac{ca^2}{b^3}\)

Svacxo:
3 cái đầu >= \(\frac{9}{a^3+b^3+c^3}\)

3 cái sau >= \(\frac{\left(\sqrt{a}b+\sqrt{c}b+\sqrt{a}c\right)^2}{a^3+b^3+c^3}\)

Cô-si: cái tử bỏ bình phương >= 3\(\sqrt{abc}\)

=> cái tử >= 9abc= 9 vì abc=1 
Còn lại tự làm

12 tháng 10 2016

Ta có \(\frac{x^3}{y}+xy\ge2x^2\)

\(\frac{y^3}{z}+yz\ge2y^2\)

\(\frac{z^3}{x}+xz\ge2z^2\)

\(\Rightarrow\frac{x^3}{y}+\frac{y^3}{z}+\frac{z^3}{x}\ge2\left(x^2+y^2+z^2\right)-xy-yz-xz\)

\(\ge2\left(x^2+y^2+z^2\right)-x^2-y^2-z^2=x^2+y^2+z^2\)

12 tháng 11 2016

a/ \(2a^2+a=3b^2+b\)

\(\Leftrightarrow2\left(a^2-b^2\right)+\left(a+b\right)=b^2\)

\(\Leftrightarrow\left(a-b\right)\left(2a+2b+1\right)=b^2\)

Giả sử d là UCLN (a - b, 2a + 2b + 1) thì ta có

b2 chia hết cho d2 => b chia hết cho d

Mà 2a + 2b + 1 - 2(a - b) = 4b + 1 chia hết cho d

=> 1 chia hết cho d hay d = 1

=> (a - b) và (2a + 2b +1) nguyên tố cùng nhau

Vậy 2a + 2b + 1 là số chính phương

12 tháng 11 2016

2 SỐ NGUYÊN TỐ CÙNG NHAU KHÔNG CÓ NGHĨA LÀ 1 TRONG 2 SỐ ĐÓ LÀ SỐ CHÍNH PHƯƠNG : VIDU 5 VÀ 6 LÀ 2 SỐ NG TỐ CÙNG NHAU VÌ CÓ UCLN=1 NHƯNG KO CÓ SỐ NÀO LÀ SỐ CHÍNH PHƯƠNG CẢ...HIHIHI

AH
Akai Haruma
Giáo viên
23 tháng 8 2020

Lời giải:

Sử dụng phương pháp hệ số bất định, ta sẽ chứng minh:

$\frac{1}{x^2+x}\geq \frac{5}{4}-\frac{3}{4}x(*)$

Thật vậy:

$(*)\Leftrightarrow \frac{1}{x^2+x}\geq \frac{5-3x}{4}$

$\Leftrightarrow 4\geq (5-3x)(x^2+x)$

$\Leftrightarrow 4-(5-3x)(x^2+x)\geq 0$

$\Leftrightarrow (x-1)^2(3x+4)\geq 0$ (luôn đúng với mọi $x>0$)

Hoàn toàn tương tự:

$\frac{1}{y^2+y}\geq \frac{5}{4}-\frac{3y}{4}$
$\frac{1}{z^2+z}\geq \frac{5}{4}-\frac{3z}{4}$

Cộng theo vế các BĐT trên ta có:

$\frac{1}{x^2+x}+\frac{1}{y^2+y}+\frac{1}{z^2+z}\geq \frac{15}{4}-\frac{3}{4}(x+y+z)=\frac{3}{2}$ (đpcm)

Dấu "=" xảy ra khi $x=y=z=1$

3 tháng 1 2016

1.\(N=x^2+\frac{1000}{x}+\frac{1000}{x}\ge3\sqrt[3]{\frac{x^2.1000.1000}{x^2}}\)
\(\Rightarrow N\ge300\)
Dấu "=" xảy ra \(\Leftrightarrow x^3=1000\Leftrightarrow x=10\)
2.\(P=\left(5x+\frac{12}{x}\right)+\left(3y+\frac{16}{y}\right)\ge2\sqrt{60}+2\sqrt{48}=4\sqrt{15}+8\sqrt{3}\)
Dấu "=" xảy ra \(\Leftrightarrow5x=\frac{12}{x};3y=\frac{16}{y}\Leftrightarrow x=\sqrt{\frac{12}{5}};y=\frac{4\sqrt{3}}{3}\)

\(\)

3 tháng 1 2016

phải là \(\le12\)

18 tháng 9 2016

\(\frac{x}{x^2-yz+2013}+\frac{y}{y^2-zx+2013}+\frac{z}{z^2-xy+2013}\)

\(=\frac{1}{\frac{x^2-yz+2013}{x}}+\frac{1}{\frac{y^2-zx+2013}{y}}+\frac{1}{\frac{z^2-xy+2013}{z}}\)

\(=\frac{1}{x+3y+3z+\frac{2yz}{x}}+\frac{1}{y+3z+3x+\frac{2xz}{y}}+\frac{1}{z+3x+3y+\frac{2xy}{z}}\)

\(\ge\frac{9}{7\left(x+y+z\right)+2xyz\left(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\right)}\ge\frac{9}{7\left(x+y+z\right)+2xyz\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\right)}=\)

\(=\frac{9}{7\left(x+y+z\right)+2xyz.\frac{1}{xyz}.\left(x+y+z\right)}=\frac{9}{9\left(x+y+z\right)}=\frac{1}{x+y+z}\)

Ta có đpcm

bó tay rùi bạn !!!! ~_~

65756578687696453724756545345363637635754754695622534434

18 tháng 5 2018

Áp dụng BĐT Cauchy cho hai số dương :

\(\frac{x^3}{y^2}+x\ge2\sqrt{\frac{x^3}{y^2}\cdot x}=2\frac{x^2}{y}\)

\(\frac{y^3}{z^2}+y\ge2\frac{y^2}{z}\)

\(\frac{z^3}{x^2}+z\ge2\frac{z^2}{x}\)

\(\Rightarrow\frac{x^3}{y^2}+\frac{y^3}{z^2}+\frac{z^3}{x^2}\ge2\left(\frac{x^2}{y}+\frac{y^2}{z}+\frac{z^2}{x}\right)-\left(x+y+z\right)\)

Mà \(\frac{x^2}{y}+\frac{y^2}{z}+\frac{z^2}{x}\ge\frac{\left(x+y+z\right)^2}{x+y+z}=x+y+z\)

\(\Rightarrow\frac{x^3}{y^2}+\frac{y^3}{z^2}+\frac{z^3}{y^2}\ge\frac{x^2}{y}+\frac{y^2}{z}+\frac{z^2}{x}\)

14 tháng 4 2020

Bất đẳng thức bị ngược dấu rồi!

Ta có: \(x+yz=x\left(x+y+z\right)+yz=\left(x+y\right)\left(z+x\right)\)

Tương tự ta có: \(y+zx=\left(x+y\right)\left(y+z\right);z+xy=\left(y+z\right)\left(z+x\right)\)

Áp dụng BĐT Côsi cho hai số dương ta có:

\(\left(x+y\right)\left(y+z\right)\left(z+x\right)\ge2\sqrt{xy}.2\sqrt{yz}.2\sqrt{zx}=8xyz\)

\(\Rightarrow\text{Σ}_{cyc}\frac{x}{x+yz}=\frac{\text{Σ}_{cyc}\left[x\left(y+z\right)\right]}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\)

\(=\frac{2\left[\left(x+y\right)\left(y+z\right)\left(z+x\right)+xyz\right]}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}=2+\frac{2xyz}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\)

\(\le2+\frac{2xyz}{8xyz}=2+\frac{1}{4}=\frac{9}{4}\)

Đẳng thức xảy ra\(\Leftrightarrow x=y=z=\frac{1}{3}\)

5 tháng 10 2018

Vào câu trả lời tương tự đi

28 tháng 5 2020

Xét \(VT=\frac{xz}{y^2+yz}+\frac{y^2}{xz+yz}+\frac{x+2z}{x+z}\)

\(=\frac{\frac{x}{y}}{\frac{y}{z}+1}+\frac{\frac{y}{z}}{\frac{x}{y}+1}+1+\frac{1}{\frac{x}{z}+1}\)

Đặt \(\frac{x}{y}=u,\frac{y}{z}=v\left(u,v>0\right)\Rightarrow\frac{x}{z}=uv\ge1\)(Do \(x\ge z\))

Khi đó vế trái được viết lại thành: \(\frac{u}{v+1}+\frac{v}{u+1}+1+\frac{1}{uv+1}\ge\frac{5}{2}\)

\(\Leftrightarrow\frac{u}{v+1}+\frac{v}{u+1}+\frac{1}{uv+1}\ge\frac{3}{2}\)với \(uv\ge1\)

Theo BĐT Bunhiacopxki dạng phân thức, ta có: \(\frac{u}{v+1}+\frac{v}{u+1}=\frac{u^2}{uv+u}+\frac{v^2}{uv+v}\ge\frac{\left(u+v\right)^2}{2uv+u+v}\)

\(\ge\frac{\left(u+v\right)^2}{\left(u+v\right)+\frac{\left(u+v\right)^2}{2}}=\frac{2\left(u+v\right)}{u+v+2}\)

Mặt khác: \(\frac{1}{uv+1}\ge\frac{1}{\frac{\left(u+v\right)^2}{4}+1}=\frac{4}{\left(u+v\right)^2+4}\)

Khi đó ta quy BĐT cần chứng minh về: \(\frac{2\left(u+v\right)}{u+v+2}+\frac{4}{\left(u+v\right)^2+4}\ge\frac{3}{2}\)(*)

Đặt \(w=u+v\ge2\sqrt{uv}\ge2\). Khi đó (*) trở thành \(\frac{2w}{w+2}+\frac{4}{w^2+4}\ge\frac{3}{2}\)với \(w\ge2\)

\(\Leftrightarrow\frac{\left(w-2\right)^2}{2\left(w+2\right)\left(w^2+4\right)}\ge0\)(đúng với mọi \(w\ge2\))

Đẳng thức xảy ra khi \(\hept{\begin{cases}u+v=2\\uv=1\\u=v\end{cases}}\Leftrightarrow u=v=1\)hay x = y = z

28 tháng 5 2020

Bạn tham khảo câu trả lời của mình và các bạn tại đây:

Câu hỏi của Lê Thành An - Toán lớp 9 - Học toán với OnlineMath

https://olm.vn/hoi-dap/detail/253622963565.html ( link nếu bạn ngại vào TKHĐ )