Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
em thử nhân S với 5 rồi lấy 5S= S thử đi
chị làm toàn như vậy
ko bt có đc ko nữa
Đặt: \(A=\frac{1}{2}.\frac{3}{4}.\frac{5}{6}.\frac{7}{8}.....\frac{2013}{2014}\) (1)
Ta thấy \(A< \frac{2}{3}.\frac{4}{5}.\frac{6}{7}.\frac{8}{9}.....\frac{2014}{2015}\)
Do đó nhân vế với vế, ta được:
\(A^2< \frac{1}{2}.\frac{2}{3}.\frac{3}{4}.\frac{4}{5}.\frac{5}{6}.\frac{6}{7}.\frac{7}{8}.\frac{8}{9}.....\frac{2013}{2014}.\frac{2014}{2015}\)
\(\Rightarrow A^2< \frac{1}{2015}\)
Mặt khác, \(A>\frac{1}{2}.\frac{4}{5}.\frac{6}{7}.\frac{8}{9}.....\frac{2014}{2015}\) (2)
Từ (1) và (2), ta được:
\(A^2>\frac{1}{4}.\left(\frac{3}{4}.\frac{4}{5}.\frac{5}{6}.\frac{6}{7}.\frac{7}{8}.\frac{8}{9}.....\frac{2013}{2014}.\frac{2014}{2015}\right)\)
\(\Rightarrow A^2>\frac{1}{4}.\frac{3}{2015}\Rightarrow A^2>\frac{3}{8060}>\frac{1}{4028}\)
Đặt B=\(\frac{2}{4^2}+\frac{2}{6^2}+\frac{2}{8^2}+....+\frac{2}{2008^2}\)
=> A+B= 2\(\left(\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{2007^2}+\frac{1}{2008^2}\right)\) <2 \(\left(\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+....+\frac{1}{2006\cdot2007}+\frac{1}{2007\cdot2008}\right)\)
=2\(\left(\frac{1}{2}-\frac{1}{2008}\right)\)=\(\frac{2006}{2008}\)
mà A<B=>A+A<A+B=2006/2008
=>A<1003/2008
mấy câu kia cũng tương tự, mình làm biếng quá
a)Ta có: 1/2-(1/3+1/4)= -1/12
1/48-(1/16-1/6)=1/8
suy ra: -1/12<x<1/8
<=> -2/24<x<3/24
=>x thuộc:(-1/24 ;0 ;1/24 ;2/24 ;3/24)
Baif nay dễ lắm cậu. Cậu chú ý xíu 1/4*5<1/4^2<1/3*4
Ở trường hơp nhỏ hơn cậu làm như sau : Đặt dãy đó là \(A=\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{2013^2}< \frac{1}{3\cdot4}+\frac{1}{4\cdot5}+...+\frac{1}{2012\cdot2013}=\frac{1}{3}-\frac{1}{2013}< \frac{1}{3}\)
Làm tương tự như ở th lớn là bạn ra kq r
A = 1/4^2 + 1/5^2 + 1/6^2 + ... + 1/2013^2
1/4^2 < 1/3*4
1/5^2 < 1/4*5
...
1/2013^2 < 1/2012*2013
=> A < 1/3*4 + 1/4*5 + ... + 1/2012*2013
=> A < 1/3 - 1/4 + 1/4 - 1/5 + ... + 1/2012 - 1/2013
=> A < 1/3 - 1/2013
=> A < 670/2013 < 1/3 (1)
1/4^2 > 1/4*5
1/5^2 > 1/5*6
...
1/2013^2 > 1/2013*2014
=> A > 1/4*5 + 1/5*6 + ... + 1/2013*2014
=> A > 1/4 - 1/5 + 1/5 - 1/6 + ... + 1/2013 - 1/2014
=> A > 1/4 - 1/2014
=> A > 1005/4028 > 1/5 (2)
(1)(2) => 1/5 < A < 1/3