\(\frac{1}{5}+\frac{1}{7}+\frac{1}{9}+...+\frac{1}{101}\)không phải là số tự n...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\frac{1}{5}+\frac{1}{7}+\frac{1}{9}+.....+\frac{1}{101}\)

\(=\frac{1}{2+3}+\frac{1}{3+4}+\frac{1}{4+5}+....+\frac{1}{50+51}\)

Anh quên mất đoạn sau rồi , nhưng hình như đến đây kl là được rồi đấy

Gọi dãy số trên là : N

Ta có N là 1 số nguyên thì N phải nằm giữa 2 số thự nhiên liên tiếp 

=> Ta cần chứng minh : \(0>N< 1\)

Ta có : N > 0 hiển nhiên

=> Điều cần chứng minh là : N < 1

Ta có công thức tổng quát :

 \(\frac{1}{n}+\frac{1}{n+2}=\frac{n+2+n}{n\left(n+2\right)}=\frac{2+2n}{n\left(n+2\right)}=\frac{2\left(n+1\right)}{n\left(n+2\right)}\)

Giả  sử : \(\frac{2\left(n+1\right)}{n\left(n+2\right)}< \frac{n}{n}< 1\)đúng

Ta được : \(\frac{2\left(n+1\right)}{n\left(n+2\right)}< \frac{n\left(n+2\right)}{n\left(n+2\right)}\Rightarrow2\left(n+1\right)< n\left(n+2\right)\Rightarrow2n+1< n^2+2n\)

Do \(n^2>1\Rightarrow2n+1< 2n+n^2\)=> \(N< 1\)

Vậy ta kl : \(0>N< 1\)

=> N ko phải là số tn

14 tháng 10 2015

Quy đồng A ta có:

A = \(\frac{7.9.11...101+5.9.11...101+...+5.7.9...99}{5.7.9...101}\)

Nhận xét:

Các tích 7.9.11...101;....;  5.7.9...97.101 đều chia hết cho 101 nhưng 5.7.9....99 không chia hết cho 101 nên A có  tử số không chia hết cho 101

Mà mẫu chia hết cho 101; 101 là số nguyên tố

=> Tử không chia hết cho mẫu

=> A là phân số  

22 tháng 6 2021

@Trần Thị Loan: Vì sao \(5.7.9...99⋮̸11\)vậy bn?

5 tháng 7 2015

A= 1/5.7 + 1/7.9 +... + 1/99 . 101 

A= 1/5 -1/7 + 1/7 - 1/9 + ......... + 1/99 - 1/101 

A= 1/5 - 1/101 = 1/116 

=> A ko là số tự nhiên

5 tháng 7 2015

Ta thấy:\(\frac{1}{5}<\frac{1}{2}=\frac{1}{1.2}\)

\(\frac{1}{7}<\frac{1}{6}=\frac{1}{2.3}\)

\(\frac{1}{101}<\frac{1}{90}=\frac{1}{9.10}\)

=>\(A<\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{9.10}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{9}-\frac{1}{10}=1-\frac{1}{10}<1\)

Do A luôn lớn hơn 0 Mà A<1=> A không phải STN

28 tháng 3 2019

\(S=\frac{1}{3}+\frac{1}{5}+\frac{1}{7}+...+\frac{1}{101}>\frac{1}{101}+\frac{1}{101}+\frac{1}{101}+...\frac{1}{101}\)(97 phân số\(\frac{1}{101}\))

\(S=\frac{1}{5}+\frac{1}{7}+\frac{1}{9}+...+\frac{1}{101}>\frac{97}{101}\)\(\Rightarrow S< 1\)

Do \(0< S< 1\)nên \(S\)không phải là số tự nhiên

28 tháng 3 2019

cảm ơn hùng

21 tháng 2 2017

A=1/5.7 + 1/7.9 + ..... + 1/99.101

A=1/5 - 1/7 + 1/7 - 1/9 + ..... + 1/99 - 1/101

A=1/5 - 1/101 = 1/116

=> A không phải là số tự nhiên