K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(=\left(-\dfrac{5}{7}\right)^{n-n}=\left(-\dfrac{5}{7}\right)^0=1\)

b: \(=\left(-\dfrac{1}{2}\right)^{2n-n}=\left(-\dfrac{1}{2}\right)^n\)

26 tháng 9 2017

\(A=\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+....+\dfrac{1}{18.19.20}=\dfrac{1}{2}\left(\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+...+\dfrac{1}{18.19}-\dfrac{1}{19.20}\right)\\ =\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{19.20}\right)\\ =\dfrac{1}{4}-\dfrac{1}{2.19.20}< \dfrac{1}{4}\)

Cái B TT nhé

\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+....+\dfrac{1}{n^2}< \dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{\left(n-1\right)n}\\ =1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{n-1}-\dfrac{1}{n}\\ =1-\dfrac{1}{n}< 1\)

D TT

E mk thấy nó ss ớ

26 tháng 9 2017

ai thế

AH
Akai Haruma
Giáo viên
8 tháng 7 2018

Lời giải:

a) \(A=\left(\frac{1}{2}-1\right)\left(\frac{1}{3}-1\right)...\left(\frac{1}{n-1}-1\right)\left(\frac{1}{n}-1\right)\)

\(=\frac{1-2}{2}.\frac{1-3}{3}.\frac{1-4}{4}...\frac{-(n-2)}{n-1}.\frac{-(n-1)}{n}\)

\(=\frac{(-1)(-2)(-3)...[-(n-2)][-(n-1)]}{2.3.4...(n-1)n}\)

\(=\frac{(-1)^{n-1}(1.2.3....(n-2)(n-1))}{2.3.4...(n-1)n}=(-1)^{n-1}.\frac{1}{n}\)

b) \(B=\left(\frac{1}{2^2}-1\right)\left(\frac{1}{3^2}-1\right)...\left(\frac{1}{n^2}-1\right)\)

\(=\frac{1-2^2}{2^2}.\frac{1-3^2}{3^2}.....\frac{1-n^2}{n^2}\)

\(=\frac{(-1)(2^2-1)}{2^2}.\frac{(-1)(3^2-1)}{3^2}....\frac{(-1)(n^2-1)}{n^2}\)

\(=(-1)^{n-1}.\frac{(2^2-1)(3^2-1)...(n^2-1)}{2^2.3^2....n^2}\)

\(=(-1)^{n-1}.\frac{(2-1)(2+1)(3-1)(3+1)...(n-1)(n+1)}{2^2.3^2....n^2}\)

\(=(-1)^{n-1}.\frac{(2-1)(3-1)...(n-1)}{2.3...n}.\frac{(2+1)(3+1)...(n+1)}{2.3...n}\)

\(=(-1)^{n-1}.\frac{1.2.3...(n-1)}{2.3...n}.\frac{3.4...(n+1)}{2.3.4...n}\)

\(=(-1)^{n-1}.\frac{1}{n}.\frac{n+1}{2}=(-1)^{n-1}.\frac{n+1}{2n}\)

21 tháng 11 2017

Ta dễ dàng chứng minh được: \(n^2+\left(n+1\right)^2>2n\left(n+1\right)\)

Thật vậy:

\(n^2+\left(n+1\right)^2=n^2+n^2+2n+1=2n^2+2n+1>2n^2+2n=2n\left(n+1\right)\)Trở lại bài toán

\(A=\dfrac{1}{5}+\dfrac{1}{13}+\dfrac{1}{25}+...+\dfrac{1}{n^2+\left(n+1\right)^2}\)

\(A=\dfrac{1}{1^2+2^2}+\dfrac{1}{2^2+3^2}+\dfrac{1}{3^2+4^2}+....+\dfrac{1}{n^2+\left(n+1\right)^2}\)

\(A< \dfrac{1}{2.1.\left(1+1\right)}+\dfrac{1}{2.2.\left(2+1\right)}+\dfrac{1}{2.3.\left(3+1\right)}+....+\dfrac{1}{2n\left(n+1\right)}\)

\(A< \dfrac{1}{2.1.2}+\dfrac{1}{2.2.3}+\dfrac{1}{2.3.4}+....+\dfrac{1}{2n\left(n+1\right)}\)

\(A< \dfrac{1}{2}\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{n\left(n+1\right)}\right)\)

\(A< \dfrac{1}{2}\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+....+\dfrac{1}{n}-\dfrac{1}{n+1}\right)\)

\(A< \dfrac{1}{2}\left(1-\dfrac{1}{n+1}\right)\)

\(A< \dfrac{1}{2}-\dfrac{1}{2n+2}< \dfrac{1}{2}\left(đpcm\right)\)

a: \(\Leftrightarrow-\dfrac{23}{5}\cdot\dfrac{50}{23}< x< \dfrac{-13}{5}:\dfrac{21}{15}=\dfrac{-13}{5}\cdot\dfrac{5}{7}=\dfrac{-13}{7}\)

=>-10<x<-13/7

hay \(x\in\left\{-9;-8;-7;-6;-5;-4;-3;-2\right\}\)

b: \(\Leftrightarrow-\dfrac{13}{3}\cdot\dfrac{1}{3}< x< \dfrac{-2}{3}\cdot\dfrac{4-3-9}{12}\)

\(\Leftrightarrow-\dfrac{13}{9}< x< \dfrac{4}{9}\)

mà x là số nguyên

nên \(x\in\left\{-1;0\right\}\)