Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tìm số tự nhiên nhỏ nhất n>1 sao cho
A=12+22+32+...n2 là 1 số chính phương
giúp mk vs sắp phải nộp rồi
tiếp nè \(=>2^{65}=2^{64+1}=2^{16.4}.2=\left(...6\right).2=\left(...2\right)\)
\(=>2^{65}-1=\left(...2\right)-1=\left(..1\right)\)
vậy tận cùng của c là 1
Tatsuya Yuuki( Team Megin Kawakuchi)
người ta đã dăng câu hỏi lên để mn giúp vì bán đấy k làm đc, mà mày tự nhiên nhảy vào bảo tự làm. Nếu mày đăng câu hỏi lên mà mn bảo m tự làm thì mày cảm thấy thế nào
1) \(x^4-2x^2-144x+1295=0\)
\(\Rightarrow\)Cậu xem lại đề thử xem nhé !
2) \(x\left(x-1\right)\left(x+1\right)\left(x+2\right)=24\)
\(\Leftrightarrow\left(x^2+2x\right)\left(x^2-1\right)-24=0\)
\(\Leftrightarrow x^4+2x^3-x^2-2x-24=0\)
\(\Leftrightarrow x^4+x^3+4x^2+x^3+x^2+4x-6x^2-6x-24=0\)
\(\Leftrightarrow x^2\left(x^2+x+4\right)+x\left(x^2+x+4\right)-6\left(x^2+x+4\right)=0\)
\(\Leftrightarrow\left(x^2+x-6\right)\left(x^2+x+4\right)=0\)
\(\Leftrightarrow\left(x^2+3x-2x-6\right)\left(x^2+x+4\right)=0\)
\(\Leftrightarrow\left[x\left(x+3\right)-2\left(x+3\right)\right]\left(x^2+x+4\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(x-2\right)\left(x^2+x+4\right)=0\)
\(\Leftrightarrow\)\(x+3=0\)
hoặc \(x-2=0\)
hoặc \(x^2+x+4=0\)
\(\Leftrightarrow\)\(x=-3\left(tm\right)\)
hoặc \(x=2\left(tm\right)\)
hoặc \(\left(x+\frac{1}{2}\right)^2+\frac{15}{4}=0\left(ktm\right)\)
Vậy tập nghiệm của phương trình là : \(S=\left\{-3;2\right\}\)
3) \(x^4-2x^3+4x^2-3x-10=0\)
\(\Leftrightarrow x^4+x^3-3x^3-3x^2+7x^2+7x-10x-10=0\)
\(\Leftrightarrow x^3\left(x+1\right)-3x^2\left(x+1\right)+7x\left(x+1\right)-10\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x^3-3x^2+7x-10\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x^3-2x^2-x^2+2x+5x-10\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left[x^2\left(x-2\right)-x\left(x-2\right)+5\left(x-2\right)\right]=0\)
\(\Leftrightarrow\left(x+1\right)\left(x-2\right)\left(x^2-x+5\right)=0\)
\(\Leftrightarrow\)\(x+1=0\)
hoặc \(x-2=0\)
hoặc \(x^2-x+5=0\)
\(\Leftrightarrow x=-1\left(tm\right)\)
hoặc \(x=2\left(tm\right)\)
hoặc \(\left(x-\frac{1}{2}\right)^2+\frac{19}{4}=0\left(ktm\right)\)
Vậy tập nghiệm của phương trình là :\(S=\left\{-1;2\right\}\)
a) \(\left(x+1\right)^2-2\left(x+1\right)\left(3-x\right)+\left(x-3\right)^2=0\)
\(\Leftrightarrow\left(x+1\right)^2+2\left(x+1\right)\left(x-3\right)+\left(x-3\right)^2=0\)
\(\Leftrightarrow\left(x+1+x-3\right)^2=0\)
\(\Leftrightarrow\left(2x-2\right)^2=0\)
\(\Leftrightarrow2x-2=0\Leftrightarrow x=1\)
Vậy x = 1
b) \(\left(x+2\right)^2-2\left(x+2\right)\left(x-8\right)+\left(x-8\right)^2=0\)
\(\Leftrightarrow\left(x+2-x+8\right)^2=0\)
\(\Leftrightarrow\)\(\left(0x+10\right)^2=0\)
=> Phương trình vô nghiệm
a) \(125x^3=\left(2x+1\right)^3+\left(3x-1\right)^3\)
\(\Leftrightarrow\left(5x\right)^3=\left(2x+1\right)^3+\left(3x-1\right)^3\) (1)
Đặt \(a=2x+1,b=3x-1\)
\(\Rightarrow a+b=5x\)
thay vào pt (1) , ta có : \(\left(a+b\right)^3=a^3+b^3\)
\(\Leftrightarrow a^3+b^3+3a^2b+3ab^2=a^3+b^3\)
\(\Leftrightarrow3a^2b+3ab^2=0\) \(\Leftrightarrow ab\left(a+b\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}ab=0\\a+b=0\end{matrix}\right.\)
Xét \(a+b=0\) \(\Rightarrow5x=0\Leftrightarrow x=0\)
Xét \(ab=0\) \(\Rightarrow\left[{}\begin{matrix}2x+1=0\\3x-1=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=-\frac{1}{2}\\x=\frac{1}{3}\end{matrix}\right.\)
Vậy tập nghiêm của pt đã cho là : \(S=\left\{0;-\frac{1}{2};\frac{1}{3}\right\}\)
b) tương tự câu a
A) x2 - 4x + 4 = (x - 2)2 (hằng đẳng thức số 2)
Cm : x2 - 4x + 4 = x2 - 2x - 2x + 4 = x(x - 2) - 2(x - 2) = (x - 2)(x - 2) = (x - 2)2
b tương tự