Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có:
(x+3).(x+4)>0
<=>x^2 + 7x + 12 > 0.
ta thấy phương trình x^2 + 7x +12 = 0 có 2 nghiệm x1= - 4
x2= - 3
hệ số a = 1 >0
vậy nghiệm của bất phương trình đã cho là x< - 4 hoặc x > -3.
Có thể xảy ra hai trường hợp:
TH1: x + 3>0 và x + 4 >0 ==>x> - 3 và x> -4 ==>x> - 3(1)
TH2: x + 3<0 và x + 4 > 0 ==> x< -3 và x<-4 ==>x< - 4 (2)
Từ (1) và (2) ta suy ra nghiệm của bất phương trình đã cho là x> - 3 và x <-4
a) = x(x-1) +1
x(x-1) = 0 khi x = 0; x=1
còn lại x(x - 1) luôn >0
vậy A(x) >0 với mọi x
b) A(x) vô nghiệm vì A(x) luôn .> 0 (cmt)
\(\left|x\right|+\left|y\right|\ge\left|x+y\right|\)
\(\Rightarrow\left(\left|x\right|+\left|y\right|\right)^2\ge\left|x+y\right|^2\)
\(\Rightarrow x^2+2\left|xy\right|+y^2\ge x^2+2xy+y^2\)
\(\Rightarrow2\left|xy\right|\ge2xy\left(luôn-đúng\right)\)
x3 - y3 = (x-y)(x2+xy+y2)
mà \(x^2+xy+y^2=x^2+2.\frac{1}{2}xy+\frac{1}{4}y^2+\frac{3}{4}y^2=\left(x+\frac{1}{2}y\right)^2+\frac{3}{4}y^2>0\)
và x>y>0 suy ra x-y > 0
vậy x3 - y3 = (x-y)(x2+xy+y2) >0 hay x3 > y3 (ĐPCM)
Mình chứng minh A<1 cho bạn nha !
A = \(\frac{3}{1.4}\)+ \(\frac{5}{4.9}\)+ .....+\(\frac{19}{81.100}\)= 1 - \(\frac{1}{4}\)+\(\frac{1}{4}\)-\(\frac{1}{9}\)+ ......+ \(\frac{1}{81}\)- \(\frac{1}{100}\)= 1 - \(\frac{1}{100}\)= \(\frac{99}{100}\)< 1
Vậy A <1 (đpcm)
ta C/m
x^3-y^3>0
<=> (x-y)(x^2+y+1)
x-y<0 hien nhien
x^2+y+1> 0 hien nhien
(-) nhan duong (+)=(-) theo quy uoc
(-)< 0 theo quy dinh
hihihi