Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(VT=\left(\frac{1}{2ab}+\frac{1}{a^2+b^2}\right)+\frac{1}{2ab}\)
\(\ge\frac{4}{\left(a+b\right)^2}+\frac{1}{2ab}=4+\frac{1}{2ab}\)
Ta có: \(\frac{\left(a+b\right)^2}{4}\ge ab\Rightarrow\frac{\left(a+b\right)^2}{2}\ge2ab\) (BĐT AM-GM or CÔ si gì đó)
\(VT\ge4+\frac{1}{\frac{\left(a+b\right)^2}{2}}=4+2=6^{\left(đpcm\right)}\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}a^2+b^2=2ab\\a+b=1\end{cases}\Leftrightarrow\hept{\begin{cases}\left(a-b\right)^2=0\\a+b=1\end{cases}}\Leftrightarrow}\hept{\begin{cases}a=b\\a+b=1\end{cases}}\Leftrightarrow a=b=\frac{1}{2}\)
Bài 1:Cách thông thường nhất là sos hoặc cauchy-Schwarz nhưng thôi ko làm:v Thử cách này cho nó mới dù rằng ko chắc
Giả sử \(a\ge b\ge c\Rightarrow c\le1\Rightarrow a+b=3-c\ge2\) và \(a\ge1\)
Ta có \(LHS=a^3.a+b^3.b+c^3.c\)
\(=\left(a^3-b^3\right)a+\left(b^3-c^3\right)\left(a+b\right)+c^3\left(a+b+c\right)\)
\(\ge\left(a^3-b^3\right).1+\left(b^3-c^3\right).2+3c^3\)
\(=a^3+b^3+c^3=RHS\)
Đẳng thức xảy ra khi a = b = c = 1
By Titu's Lemma we easy have:
\(D=\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2\)
\(\ge\frac{\left(x+y+\frac{1}{x}+\frac{1}{y}\right)^2}{2}\)
\(\ge\frac{\left(x+y+\frac{4}{x+y}\right)^2}{2}\)
\(=\frac{17}{4}\)
Mk xin b2 nha!
\(P=\frac{1}{x^2+y^2}+\frac{1}{xy}+4xy=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{1}{2xy}+4xy\)
\(\ge\frac{\left(1+1\right)^2}{x^2+y^2+2xy}+\left(4xy+\frac{1}{4xy}\right)+\frac{1}{4xy}\)
\(\ge\frac{4}{\left(x+y\right)^2}+2\sqrt{4xy.\frac{1}{4xy}}+\frac{1}{\left(x+y\right)^2}\)
\(\ge\frac{4}{1^2}+2+\frac{1}{1^2}=4+2+1=7\)
Dấu "=" xảy ra khi: \(x=y=\frac{1}{2}\)
1. Áp dụng BĐT Cauchy dạng Engle, ta có :
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\)
\(\Leftrightarrow\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge\left(a+b+c\right)\left(\frac{9}{a+b+c}\right)\)
\(\Leftrightarrow\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)
Dấu "=" xảy ra \(\Leftrightarrow a=b=c\)
\(\frac{1}{3}\left(a^3+b^3+a+b\right)+ab\le a^2+b^2+1\)
\(\Leftrightarrow\frac{1}{3}\left(a+b\right)\left(a^2+b^2+1-ab\right)+ab\le a^2+b^2+1\)
\(\Leftrightarrow\left(a^2+b^2+1\right)\left(\frac{a+b}{3}-1\right)-ab\left(\frac{a+b}{3}-1\right)\le0\)
\(\Leftrightarrow\left(a^2+b^2+1-ab\right)\left(\frac{a+b}{3}-1\right)\le0\)
Vì a, b dương \(\Rightarrow a^2+b^2+1-ab>0\Rightarrow\left(\frac{a+b}{3}-1\right)\le0\Leftrightarrow a+b\le3\)
\(M=\frac{a^2+8}{a}+\frac{b^2+2}{b}=a+\frac{8}{a}+b+\frac{2}{b}=2a+2b+\frac{8}{a}+\frac{2}{b}-\left(a+b\right)\ge8+4-3=9\)
Áp dụng BĐT Cauchy cho a ; b dương
Dấu "=" xảy ra \(\Leftrightarrow a=2;b=1\)
đặt \(A=\frac{1}{1-ab}+\frac{1}{1-bc}+\frac{1}{1-ca}\)
\(\Rightarrow A-3=P=\frac{ab}{1-ab}+\frac{bc}{1-bc}+\frac{ca}{1-ca}\)
áp dụng BĐT cô-si ta có:
\(a^2+b^2\ge2ab;b^2+c^2\ge2bc;c^2+a^2\ge2ca\)
\(\Rightarrow\frac{a^2+b^2}{2}\ge ab;\frac{b^2+c^2}{2}\ge bc;\frac{c^2+a^2}{2}\ge ca\)
\(\Rightarrow1-\frac{a^2+b^2}{2}\le1-ab;1-\frac{b^2+c^2}{2}\le1-bc;1-\frac{c^2+a^2}{2}\le1-ca\)
\(\Rightarrow P\le\frac{2ab}{\left(a^2+c^2\right)+\left(b^2+c^2\right)}+\frac{2bc}{\left(a^2+b^2\right)+\left(a^2+c^2\right)}+\frac{2ca}{\left(a^2+b^2\right)+\left(b^2+c^2\right)}\)
\(\Rightarrow P\le\frac{1}{2}\left(\frac{\left(a+b\right)^2}{\left(a^2+c^2\right)+\left(b^2+c^2\right)}+\frac{\left(b+c\right)^2}{\left(a^2+b^2\right)+\left(a^2+c^2\right)}+\frac{\left(c+a\right)^2}{\left(a^2+b^2\right)+\left(b^2+c^2\right)}\right)\)
Áp dụng BĐT Schwarts ta có:
\(\frac{\left(a+b\right)^2}{\left(a^2+c^2\right)+\left(b^2+c^2\right)}\le\frac{a^2}{a^2+c^2}+\frac{b^2}{b^2+c^2}\)
\(\frac{\left(b+c\right)^2}{\left(a^2+b^2\right)+\left(a^2+c^2\right)}\le\frac{b^2}{a^2+b^2}+\frac{c^2}{a^2+c^2}\)
\(\frac{\left(c+a\right)^2}{\left(a^2+b^2\right)+\left(b^2+c^2\right)}\le\frac{a^2}{a^2+b^2}+\frac{c^2}{b^2+c^2}\)
\(\Rightarrow P\le\frac{1}{2}\left(\frac{a^2+b^2}{a^2+b^2}+\frac{b^2+c^2}{b^2+c^2}+\frac{c^2+a^2}{c^2+a^2}\right)=\frac{1}{2}.3=\frac{3}{2}\)
\(\Rightarrow P+3\le\frac{3}{2}+3\)
\(\Rightarrow A\le\frac{9}{2}\)
dấu "=" xảy ra khi \(a=b=c=\frac{1}{\sqrt{3}}\)
Bất đẳng thức cần chứng minh tương đương: \(\frac{1}{ab-1}+\frac{1}{bc-1}+\frac{1}{ca-1}\ge\frac{-9}{2}\)
Theo bất đẳng thức Bunyakovsky dạng phân thức, ta được: \(\frac{1}{ab-1}+\frac{1}{bc-1}+\frac{1}{ca-1}\ge\frac{9}{ab+bc+ca-3}\)
\(\ge\frac{9}{a^2+b^2+c^2-3}=\frac{9}{1-3}=\frac{-9}{2}\left(Q.E.D\right)\)
Đẳng thức xảy ra khi \(a=b=c=\frac{1}{\sqrt{3}}\)
Ta có: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge a+b+c\)
\(\Rightarrow ab+bc+ca\ge abc\left(a+b+c\right)\)
Lại có: \(\frac{\left(a+b+c\right)^2}{3}\ge ab+bc+ca\)
\(\Rightarrow\frac{\left(a^2+b+c\right)}{3}\ge abc\left(a+b+c\right)\)
\(\Rightarrow a+b+c\ge3abc\)