\(2^{2n}\left(2^{2n+1}-1\right)-1⋮9\) với mọi n thuộc N*

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 12 2021

\(\left(4^n-1\right)⋮\left(4-1\right)=3\)

Đặt \(4^n=3m+1\left(m\in N\right)\)

\(\Rightarrow2^{2n}\left(2^{2n+1}-1\right)-1=4^n\left(2.4^n-1\right)\\ =\left(3m+1\right)\left[2\left(3m+1\right)-1\right]-1\\ =\left(3m+1\right)\left(6m+1\right)-1\\ =18m^2+3m+6m+1-1\\ =9\left(2m^2+m\right)⋮9\)

21 tháng 5 2018

Ta chứng minh \(2^2+4^2+...+\left(2n\right)^2=\frac{2n\left(n+1\right)\left(2n+1\right)}{3}\)  (1)  

với mọi n \(\in\)N* , bằng phương pháp quy nạp 

Với n = 1, ta có \(2^2=4=\frac{2.1\left(1+1\right)\left(2.1+1\right)}{3}\)

=> (1) đúng khi n = 1 

Giả sử đã có (1) đúng khi n = k , k\(\in\)N* , tức là giả sử đã có : 

\(2^2+4^2+...+\left(2k\right)^2=\frac{2k\left(k+1\right)\left(2k+1\right)}{3}\)

Ta chứng minh (1) đúng khi n = k + 1 , tức là ta sẽ chứng minh 

\(2^2+4^2+...+\left(2k\right)^2+\left(2k+2\right)^2=\frac{2k\left(k+1\right)\left(k+2\right)\left(2k+3\right)}{3}\)

=> Từ giả thiết quy nạp ta có : 

\(2^2+4^2+...+\left(2k\right)^2+\left(2k+2\right)^2=\frac{2k\left(k+1\right)\left(2k+1\right)}{3}+\left(2k+2\right)^2\)

                                                                    \(=\frac{2\left(k+1\right)\left(2k^2+k+6k+6\right)}{3}\)

                                                                    \(=\frac{2\left(k+1\right)\left[2k\left(k+2\right)+3\left(k+2\right)\right]}{3}\)

                                                                    \(=\frac{2\left(k+1\right)\left(k+2\right)\left(2k+3\right)}{3}\)

Từ các chứng minh trên , suy ra (1) đúng với mọi n \(\in\)N*                                             

21 tháng 5 2018

ai quan tam lam chi

Bạn tham khảo :

Violympic toán 9

3 tháng 8 2016

Tôi cũng là của FC Real Madrid ở Hà Nam.

Chúng mình kết bạn nhé.hihi.

24 tháng 8 2019

Bài làm

Khai triển vế trái ta được

\(\left(\sqrt{n+1}\right)^2-2\sqrt{n+1}.\sqrt{n}+\left(\sqrt{n}\right)^2\)

\(=n+1+n-2\sqrt{n\left(n+1\right)}\)

\(=2n+1-2\sqrt{n\left(n+1\right)}\)

Biến đổi vế phải

\(\left(2n+1\right)-\sqrt{4n^2+4n+1-1}=2n+1-\sqrt{4n\left(n+1\right)}\)

\(=2n+1-\sqrt{4}.\sqrt{n\left(n+1\right)}\)

Từ đó suy ra hai vế bằng nhau. Vậy đẳng thức đúng.

(Thực ra đẳng thức đúng với n là số thực không âm)

14 tháng 9 2020

Ta có: \(VT=\sqrt{\left(2n+1\right)^2}+\sqrt{4n^2}=\sqrt{\left(2n+1\right)^2}+\sqrt{\left(2n\right)^2}\)

\(=\left|2n+1\right|+\left|2n\right|\)

Vì \(n\inℕ\)\(\Rightarrow2n+1>0\)\(2n\ge0\)

\(\Rightarrow\left|2n+1\right|=2n+1\)và \(\left|2n\right|=2n\)

\(\Rightarrow VT=2n+1+2n=4n+1\)

Ta có: \(VP=\left(2n+1\right)^2-4n^2=\left(2n+1\right)^2-\left(2n\right)^2\)

\(=\left(2n+1-2n\right)\left(2n+1+2n\right)=4n+1\)

\(\Rightarrow VT=VP\)\(\Rightarrowđpcm\)

30 tháng 6 2017

bạn chứng minh bằng quy nạp á

30 tháng 6 2017

cái này cũng dễ

chỉ cần tính theo công thức 

quy nạp là sẽ đc

2 tháng 7 2017

đặt S=22n(22n+1-1)-1

=>2S=24n+2-22n+1-2

=24n+2+22n+2-1-3.22n+1-3

=(22n+1+1)2-3(22n+1+1)

=(22n+1+1)(22n+1-2)

=2(22n+1+1)(22n-1)

4 đồng dư với 1(mod 3)

=>22 đồng dư với 1(mod 3)

=>22n đồng dư với 1(mod 3)

=>22n+1 đồng dư với 2(mod 3)

=>22n+1+1 chia hết cho 3

22n-1 chia hết cho 3

=>S=2(22n+1+1)(22n-1) chia hết cho 9

=>đpcm