Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo hằng đẳng thức
\(a^2+b^2=\left(a+b\right)^2-2ab;\)
\(c^2+d^2=\left(c+d\right)^2-2cd\)
\(\Rightarrow\)
\(a^2+b^2\)và \(a+b\) cùng chẵn, hoặc cùng lẻ;
\(c^2+d^2\) và \(c+d\)cùng chẵn hoặc cùng lẻ. Kết hợp với
\(a^2+b^2=c^2+d^2\Rightarrow a+b\) và \(c+d\) cùng chẵn hoặc cùng lẻ
Từ đó \(a+b+c+d\)chẵn, và vì \(a+b+c+d\ge4\)
nên \(a+b+c+d\) là hợp số.
Xét ( a2 + b2 + c2 + d2 ) - ( a + b + c + d)
= a(a -1) + b( b -1) + c( c – 1) + d( d – 1)
Vì a là số nguyên dương nên a, (a – 1) là hai số tự nhiên liên tiếp
=> a(a-1) chia hết cho 2. Tương tự ta có b(b-1); c(c-1); d(d-1) đều chia hết cho 2
=> a(a -1) + b( b -1) + c( c – 1) + d( d – 1) là số chẵn
Lại có a2 + c2 = b2 + d2=> a2 + b2 + c2 + d2 = 2( b2 + d2) là số chẵn.
Do đó a + b + c + d là số chẵn mà a + b + c + d > 2 (Do a, b, c, d thuộc N*)
a + b + c + d là hợp số.
Sai đề,sửa đề : \(a-b=c+d\)
\(a-b=c+d\)
\(\Rightarrow a=b+c+d\)
\(\Rightarrow a^2+b^2+c^2+d^2=\left(b+c+d\right)^2+b^2+c^2+d^2\)
\(\Rightarrow b^2+c^2+d^2+2bc+2bd+2cd+b^2+c^2+d^2\)
\(=\left(b+c\right)^2+\left(c+d\right)^2+\left(b+d\right)^2\left(đpcm\right)\)
Do tổng 3 số là một số lẻ nên 3 số gồm: 2 chẵn + 1 lẻ hoặc 3 lẻ
+TH1: 2 số chẵn và 1 số lẻ. Do vai trò của a, b, c là như nhau nên ta giả sử \(a=2x;\text{ }b=2y;\text{ }c=2z+1\) (a và b chẵn; c lẻ).
\(2007=\left(2x\right)^2+\left(2y\right)^2+\left(2z+1\right)^2=4x^2+4y^2+4z^2+4z+1\)
\(\Rightarrow4\left(x^2+y^2+z^2+z\right)=2006\)
Vế trái chia hết cho 6 mà vế phải không chia hết cho 6 => không tồn tại các số nguyên x, y, z => không tồn tại các số nguyên a, b, c.
+TH2: 3 số đều lẻ.
Giả sử \(a=2x+1;b=2y+1;c=2z+1\)
\(2007=\left(2x+1\right)^2+\left(2y+1\right)^2+\left(2z+1\right)^2=4x^2+4x+1+4y^2+4y+1+4z^2+4z+1\)
\(\Rightarrow4\left(x^2+x+y^2+y+z^2+z\right)=2004\)
\(\Rightarrow x\left(x+1\right)+y\left(y+1\right)+z\left(z+1\right)=501\)
+Do x và x+1 là 2 số nguyên liên tiếp nên 1 trong 2 số là số chẵn => tích của chúng là số chẵn hay x(x+1) chẵn.
Tương tự y(y+1) và z(z+1) đều chẵn
=> Vế trái chẵn và vế phải = 501 là một số lẻ
=> không tồn tại x, y, z nguyên.
=> không tồn tại các số nguyên a, b, c thỏa mãn.
Vậy: không tồn tại các số nguyên a, b, c thỏa \(a^2+b^2+c^2=2007\)
Cảm ơn Mr Lazy nha, nhưng mình vừa biết làm xong, bạn giải giùm mình bài này nhé http://olm.vn/hoi-dap/question/128897.html