K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 9 2020

Bạn cho mình hỏi a, b chỉ là số nguyên hay là số nguyên dương ạ?

25 tháng 9 2020

 nguyên dương bạn nhé 

19 tháng 9 2016

thtfgfgfghggggggggggggggggggggg

27 tháng 5 2021

thật ra nó là lớp 7 đấy nhưng mình nghĩ lớp 8 mới giỏi mói giải đc

 

27 tháng 5 2021

Giả sử \(a^2+1\) và \(b^2+1\) cùng chia hết cho số nguyên tố p

\(\Rightarrow a^2-b^2⋮p\)

\(\Rightarrow\left(a-b\right)\left(a+b\right)⋮p\Rightarrow\left[{}\begin{matrix}a-b⋮p\\a+b⋮p\end{matrix}\right.\).

+) Nếu \(a-b⋮p\) thì ta có \(\left(a^2+1\right)\left(b^2+1\right)-\left(a-b\right)^2⋮p\Rightarrow\left(ab+1\right)^2⋮p\Rightarrow ab+1⋮p\) (vô lí do (a - b, ab + 1) = 1)

+) Nếu \(a+b⋮p\) thì tương tự ta có \(ab-1⋮p\). (vô lí)

Do đó \(\left(a^2+1,b^2+1\right)=1\).

Giả sử \(\left(a+b\right)^2+\left(ab-1\right)^2=c^2\) với \(c\in\mathbb{N*}\)

Khi đó ta có \(\left(a^2+1\right)\left(b^2+1\right)=c^2\).

Mà \(\left(a^2+1,b^2+1\right)=1\) nên theo bổ đề về số chính phương, ta có \(a^2+1\) và \(b^2+1\) là các số chính phương.

Đặt \(a^2+1=d^2(d\in\mathbb{N*})\Rightarrow (d-a)(d+a)=1\Rightarrow d=1;a=0\), vô lí.

Vậy ....

24 tháng 2 2019

Em không chắc đâu ạ.

\(PT\Leftrightarrow a^2+b^2+1-2ab-2a-2b=0\)

\(\Leftrightarrow\left(a-b\right)^2-2\left(a+b\right)+1=0\)

Pt có nghiệm \(\Leftrightarrow\Delta'=\left(a+b\right)^2-\left(a^2-2ab+b^2\right)\ge0\)

\(\Leftrightarrow4ab\ge0\Leftrightarrow ab\ge0\Leftrightarrow\orbr{\begin{cases}a=0\\b=0\end{cases}}\)

Với a = 0 thì \(b^2-2b+1=0\Leftrightarrow\left(b-1\right)^2=0\Leftrightarrow b=1\)

Khi đó a,b là hai số chính phương liên tiếp (1)

Tương tự ta cũng có với b = 0 thì a = 1.

Khi đó a,b là hai số chính phương liên tiếp (2)

Từ (1) và (2) ta có đpcm.

24 tháng 2 2019

Ơ chết,hình như mình sai thì phải

9 tháng 12 2016

Điều kiện đề bài (2c)2=(a+c)(b+c)⇒(2c)2=(a+c)(b+c). Gọi d=gcd(a+c,b+c)d=gcd(a+c,b+c) thì do ab=pPa−b=p∈P nên d=1d=1hoặc d=pd=p

Nếu d=1d=1 thì a+c=x2,b+c=y2a+c=x2,b+c=y2 ( xy=2cxy=2c)

p=(xy)(x+y)⇒p=(x−y)(x+y). p=2p=2 thì vô lý. pp lẻ thì dễ thấy x=p+12=ab+12x=p+12=a−b+12y=ab12y=a−b−12

2c=xy=(ab1)(ab+1)48c+1=(ab)2⇒2c=xy=(a−b−1)(a−b+1)4⇒8c+1=(a−b)2 là scp

Nếu d=pd=p thì a+c=pm2,b+c=pn2a+c=pm2,b+c=pn2 ( 2c=pmn2c=pmn)

(mn)(m+n)=1m=1,n=0⇒(m−n)(m+n)=1→m=1,n=0 (loại)