K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
AP
1
Các câu hỏi dưới đây có thể giống với câu hỏi trên
BD
0
M
13 tháng 11 2017
1.c)1. Xét n chẵn, hai số đều chẵn → không nguyên tố cùng nhau
2. Xét n lẻ, ta chứng minh 2 số này luôn nguyên tố cùng nhau
9n+24=3(3n+8)
Vì 3n+4 không chia hết cho 3, nên ta xét tiếp 3n+8
Giả sử k là ước số của 3n+8 và 3n+4, đương nhiên k lẻ (a)
→k cũng là ước số của (3n+8)−(3n+4)=4 ->chẵn (b)
Từ (a) và (b)→ Mâu thuẫn
Vậy với nn lẻ, 2 số đã cho luôn luôn nguyên tố cùng nhau
LL
0
a) Gọi ƯCLN của 3n+2 và 5n+3 là m
3n+2 chia hết cho m<=>15n+10 chia hết cho m
5n+3 chia hết cho m<=>15n+9 chia hết cho m
=>15n+10-(15n+9) chia hết cho m
1 chia hết cho m
m=1
=> ƯCLN của 3n+2 và 5n+3 là 1=>3n+2 và 5n+3 là 2 số nguyên tố cùng nhau