Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Ta có: \(4\equiv1\left(mod3\right)\)
\(\Rightarrow4^{2018}\equiv1\left(mod3\right)\)
\(\Rightarrow4^{2018}-1⋮3\)
b, Ta có: \(5\equiv1\left(mod4\right)\)
\(\Rightarrow5^{2019}\equiv1\left(mod4\right)\)
\(\Rightarrow5^{2019}-1⋮4\)
c, \(4\equiv-1\left(mod5\right)\)
\(\Rightarrow4^{2019}\equiv-1\left(mod5\right)\)
\(\Rightarrow4^{2019}+1⋮5\)
d, \(5\equiv-1\left(mod6\right)\)
\(\Rightarrow5^{2017}\equiv-1\left(mod6\right)\)
\(\Rightarrow5^{2017}+1⋮6\)
1. Vì \(4\) chia \(3\) dư \(1\)
\(\Rightarrow4^{2018}\) chia \(3\) dư \(1^{2018}=1.\)
\(\Rightarrow4^{2018}-1\) chia hết cho \(3.\)
Đặt \(A_1=\left(1+4+4^2+...+4^{2016}+4^{2017}\right)\)
Ta có: \(A_1=\left(1+4+4^2+...+4^{2016}+4^{2017}\right)\)
\(\Leftrightarrow4A_1=4+4^2+4^3+...+4^{2017}+4^{2018}\)
Lấy \(4A_1-A_1\)ta có:
\(4A_1-A_1=\left(4+4^2+4^3+...+4^{2017}+4^{2018}\right)-\left(1+4+4^2+...+4^{2016}+4^{2017}\right)\)
\(\Leftrightarrow3A_1=4^{2018}-1\)
\(\Leftrightarrow A_1=\frac{4^{2018}-1}{3}\)
Thay \(A_1=\frac{4^{2018}-1}{3}\)vào biểu thức A, ta có:
\(A=75.\left(\frac{4^{2018}-1}{3}\right)+25\)
\(\Leftrightarrow A=25.\left(4^{2018}-1\right)+25\)
\(\Leftrightarrow A=25.4^{2018}⋮4^{2018}\)
Vậy \(A⋮4^{2018}\)
chúc bn hok tốt
Ta có:
- \(3^3=27\equiv1\left(mod13\right)\Rightarrow\left(3^3\right)^{35}=3^{105}\equiv1\left(mod13\right)\)
\(4^3=64\equiv-1\left(mod13\right)\Rightarrow\left(4^3\right)^{35}=4^{105}\equiv-1\left(mod13\right)\)
Vậy \(A=3^{105}+4^{105}\equiv1+\left(-1\right)\left(mod13\right)\) hay \(A⋮13\left(1\right)\)
- \(4^3\equiv-2\left(mod11\right)\Rightarrow\left(4^3\right)^5=4^{15}\equiv\left(-2\right)^5\left(mod11\right)\) hay \(4^{15}\equiv1\left(mod11\right)\)
\(3^5=243\equiv1\left(mod11\right)\Rightarrow\left(3^5\right)^{21}=3^{105}\equiv1\left(mod11\right)\)
Vậy \(A=3^{105}+4^{105}\equiv1+1\left(mod11\right)\) hay \(A=3^{105}+4^{105}\equiv2\left(mod11\right)\)
=> A không chia hết cho 11 (2)
Từ (1) và (2) => đcpm
Chứng minh chia hết cho 13:
\(A=3^{105}+4^{105}\\ A=\left(3^3\right)^{35}+\left(4^3\right)^{35}\\ A=27^{35}+64^{35}\\ A=\left(27+64\right)\left(27^{34}-27^{33}.35+.......+35^{34}\right)\)
\(A=91\left(27^{34}-27^{33}.35+........+35^{34}\right)\)
\(A=13.7\left(27^{34}-27^{33}.35+........+35^{34}\right)\) chia hết cho 13
Chứng minh không chia hết cho 11
\(3^{105}=243^{21}=\left(242+1\right)^{21}=242^{21}+2.242+1^{21}=242^{21}+2.242+1\)
Vì \(242\) chia hết cho 11 nên \(242^{21}+2.242+1\) chia 11 dư 1
\(4^{105}=1024^{21}=\left(1023+1\right)^{21}=1023^{21}+2.1023+1\)
Vì \(1023\) chia hết cho 11 nên \(1023^{21}+2.1023+1\) chia 11 dư 1
Vậy tổng \(A=3^{105}+4^{105}\) chia 11 dư 2 \(\left(1+1\right)\)
Vậy A không chia hết cho 11 (2)
a)Vì 4 chia 3 dư 1
=>4^2018 chia 3 dư 1^2018=1
=>462018-1 chia hết cho 3
b)Ta có:
5^2019=(5^2)^1009*5
=25^1009*5
=...25*5
=...25
=>5^2019-1=...24
Vì 2 cs tận cùng của ...24 là 24 chia hết cho 4
=>5^2019-1 chia hết cho 4
Vậy......
Ta có:
\(4^{2018}-1=4^{2018}-4^{2017}+4^{2017}-4^{2016}+4^{2016}-4^{2015}+...+4-1\)
\(=4^{2017}\left(4-1\right)+4^{2016}\left(4-1\right)+4^{2015}\left(4-1\right)+...+1.\left(4-1\right)\)
\(=\left(4-1\right)\left(4^{2017}+4^{2016}+4^{2015}+...+1\right)=3\left(4^{2017}+4^{2016}+4^{2015}+...+1\right)⋮3\)
Vậy \(4^{2018}-1⋮3\)
Chứng minh tương tự \(5^{2019}-1⋮4\)
\(4^{2019}+1\)
Xét:
\(\left\{{}\begin{matrix}4^1=4=\overline{...4}\\4^2=16=\overline{...6}\\4^3=64=\overline{...4}\\4^4=256=\overline{...6}\end{matrix}\right.\)
Từ đó ta có nhận xét:
\(4\) lũy thừa lẻ thì có tận cùng = 4,lũy thừa chẵn thì có tận cùng =6
\(2019\) là số lẻ
\(\Rightarrow4^{2019}=\overline{...4}\)
\(\Rightarrow4^{2019}+1=\overline{...5}\)
\(\Rightarrow4^{2019}+1⋮5\Rightarrowđpcm\)