K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 1 2016

kết bạn với mình nhé 

11 tháng 1 2018

ab+cd+eg chia hết cho 11

Mà 9999ab = 99.11.ab chia hết cho 11 và 99cd = 9.11.cd chia hết cho 11

=> 9999ab+99cd+ab+cd+eg chia hết cho 11

=> 10000ab+100cd+eg chia hết cho 11

=> ab0000+cd00+eg chia hết cho 11

=> abcdeg chia hết cho 11

=> ĐPCM

Tk mk nha

11 tháng 1 2018

Ta có: \(\overline{abcdeg}=10000\overline{ab}+100\overline{cd}+\overline{eg}=9999\overline{ab}+99\overline{cd}+\left(\overline{ab}+\overline{cd}+\overline{eg}\right)\)

Mà \(999\overline{ab}⋮11;99\overline{cd}⋮11;\left(\overline{ab}+\overline{cd}+\overline{eg}\right)⋮11\)

\(\Rightarrow9999\overline{ab}+99\overline{cd}+\left(\overline{ab}+\overline{cd}+\overline{eg}\right)⋮11\)

Vậy...

16 tháng 8 2016

Mk chỉ bt lm phần trên thôi nha :)

Xét thừa số (n+3) ta thấy: 3 là số tự nhiên lẻ (1)

Lại có trong thừa số (n+6): 6 là số tự nhiên chẵn(2)

Mà số tự nhiên chia hết cho 2 là số tự nhiên chẵn và trong 1 tích chỉ cần 1 thừa số là số chẵn => tích đó chẵn.(3)

Từ (1) (2) và (3): (n+3)x(n+6) luôn là số chẵn hay chia hết cho 2 với mọi n thuộc N

14 tháng 4 2018

VÌ DẤU HIỆU CHIA HẾT CHO 11 LÀ 1TRONG 2 ĐK TRÊN NÊN ĐK TRÊN ĐÚNG

(ĐPCM)

TK NHA

...

=))

24 tháng 10 2016

Ta có:

  • \(3^3=27\equiv1\left(mod13\right)\Rightarrow\left(3^3\right)^{35}=3^{105}\equiv1\left(mod13\right)\)

\(4^3=64\equiv-1\left(mod13\right)\Rightarrow\left(4^3\right)^{35}=4^{105}\equiv-1\left(mod13\right)\)

Vậy \(A=3^{105}+4^{105}\equiv1+\left(-1\right)\left(mod13\right)\) hay \(A⋮13\left(1\right)\)

  • \(4^3\equiv-2\left(mod11\right)\Rightarrow\left(4^3\right)^5=4^{15}\equiv\left(-2\right)^5\left(mod11\right)\) hay \(4^{15}\equiv1\left(mod11\right)\)

\(3^5=243\equiv1\left(mod11\right)\Rightarrow\left(3^5\right)^{21}=3^{105}\equiv1\left(mod11\right)\)

Vậy \(A=3^{105}+4^{105}\equiv1+1\left(mod11\right)\) hay \(A=3^{105}+4^{105}\equiv2\left(mod11\right)\)

=> A không chia hết cho 11 (2)

Từ (1) và (2) => đcpm

24 tháng 10 2016

Chứng minh chia hết cho 13:

\(A=3^{105}+4^{105}\\ A=\left(3^3\right)^{35}+\left(4^3\right)^{35}\\ A=27^{35}+64^{35}\\ A=\left(27+64\right)\left(27^{34}-27^{33}.35+.......+35^{34}\right)\)

\(A=91\left(27^{34}-27^{33}.35+........+35^{34}\right)\)

\(A=13.7\left(27^{34}-27^{33}.35+........+35^{34}\right)\) chia hết cho 13

Chứng minh không chia hết cho 11

\(3^{105}=243^{21}=\left(242+1\right)^{21}=242^{21}+2.242+1^{21}=242^{21}+2.242+1\)

\(242\) chia hết cho 11 nên \(242^{21}+2.242+1\) chia 11 dư 1

\(4^{105}=1024^{21}=\left(1023+1\right)^{21}=1023^{21}+2.1023+1\)

\(1023\) chia hết cho 11 nên \(1023^{21}+2.1023+1\) chia 11 dư 1

Vậy tổng \(A=3^{105}+4^{105}\) chia 11 dư 2 \(\left(1+1\right)\)

Vậy A không chia hết cho 11 (2)

 

22 tháng 7 2023

a) Ta có A = 710 + 79 - 78 

                 = 78( 72 + 7 - 1 )

                 = 78 . 55 ⋮ 11 vì 55 ⋮ 11

Vậy A ⋮ 11

b) Ta có B = 115 + 114 + 11

                 = 113( 112 + 11 + 1 )

                 = 113 . 133 ⋮ 7

Vậy B ⋮ 7

22 tháng 7 2023

a,A=710+79-78=78(72+7-1)=78x55 ⋮11 vì 55⋮11

b,115+114+113=113(112+11+1)=113x133⋮7 vì 133⋮7

22 tháng 10 2017

Sửa đề:

\(7^6+7^5-7^4\)

\(\Rightarrow7^4.7^2+7^4.7-7^4.1\)

\(\Rightarrow7^4.\left(49+7-1\right)\)

\(\Rightarrow7^4.55⋮11\)

22 tháng 10 2017

76-75-74=74(72-7-1)=74.41. Sai đề