Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Ta có: \(\frac{n^5}{5}+\frac{n^3}{3}+\frac{7n}{15}=\frac{n^5-n}{5}+\frac{n}{5}+\frac{n^3-n}{3}+\frac{n}{3}+\frac{7n}{15}\)
\(=\frac{n^5-n}{5}+\frac{n^3-n}{3}+n\)
Chứng minh \(n^5-n⋮5\Rightarrow\frac{n^5-n}{5}\in Z\)
\(n^3-n⋮3\Rightarrow\frac{n^3-n}{3}\in Z\)
\(\Rightarrow\frac{n^5-n}{5}+\frac{n^3-n}{3}+n\in Z\)
=> Đpcm
b, Tương tự dùng tính chất chia hết
\(\frac{a^3+3a^2+2a}{24}=\frac{a\left(a+1\right)\left(a+2\right)}{24}\)
de thay h 3 so tu nhien lien tiep chia het cho 6
do a la so tu nhien chan nen hien nhien a phai chia het cho 4
\(\Rightarrow\)chia het cho 24\(\Rightarrow\) A la so nguyen
Bài 1:
Có: \(\frac{1}{\left(n+1\right)\sqrt{n}}=\frac{\sqrt{n}}{n\left(n+1\right)}=\sqrt{n}\left(\frac{1}{n}-\frac{1}{n+1}\right)=\sqrt{n}\left(\frac{1}{\sqrt{n}}+\frac{1}{\sqrt{n+1}}\right)\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)
\(=\left(1+\frac{\sqrt{n}}{\sqrt{n+1}}\right)\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)< 2\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)
Có: \(\frac{1}{2\sqrt{1}}+\frac{1}{3\sqrt{2}}+\frac{1}{4\sqrt{3}}+...+\frac{1}{\left(n+1\right)\sqrt{n}}\)
xong bn áp dụng lên trên lm tiếp
Bài 3:
theo bđt cô si ta có:
\(\sqrt{\frac{b+c}{a}\cdot1}\le\left(\frac{b+c}{a}+1\right):2=\frac{b+c+a}{2a}\)
=> \(\sqrt{\frac{a}{b+c}}\ge\frac{2a}{a+b+c}\) (1)
Tương tự ta có :
\(\sqrt{\frac{b}{a+c}}\ge\frac{2b}{a+b+c}\) (2)
\(\sqrt{\frac{c}{a+b}}\ge\frac{2c}{a+b+c}\) (3)
Cộng vế vs vế (1)(2)(3) ta có:
\(\sqrt{\frac{a}{b+c}}+\sqrt{\frac{b}{a+c}}+\sqrt{\frac{c}{a+b}}\ge\frac{2a+2b+2c}{a+b+c}=2\)
1.
\(DK:x\ge2\)
\(\Leftrightarrow\left(3\sqrt{x-2}-3\right)+\left(3-\sqrt{x+6}\right)-\left(2x-6\right)=0\)
\(\Leftrightarrow\frac{3\left(x-3\right)}{\sqrt{x-2}+3}-\frac{x-3}{3+\sqrt{x+6}}-2\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(\frac{3}{\sqrt{x-2}+3}-\frac{1}{3+\sqrt{x+6}}-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=3\left(1\right)\\\frac{3}{\sqrt{x-2}+3}-\frac{1}{3+\sqrt{x+6}}-2=0\left(2\right)\end{cases}}\)
PT(2) khac khong voi moi \(x\ge2\)
Vay nghiem cua PT la \(x=3\)
\(x^3+2x=y^2-2009\)
\(\Leftrightarrow x^3-x=y^2-3x-2009\)
\(\Leftrightarrow\left(x-1\right)x\left(x+1\right)=y^2-3x-2009\)
Dễ thấy VT chia hết cho 3 nên VP chia hết cho 3
Suy ra \(y^2\) chia 3 dư 2 vì 2009 chia 3 dư 2 và 3x chia hết cho 3 ( vô lý vì số chính phương ko chia 3 dư 2 )
Vậy pt vô nghiệm
Xét bài toán phụ sau:
Nếu \(a+b+c=0\Leftrightarrow\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}}=\left|\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right|\) \(\left(a,b,c\ne0\right)\)
Thật vậy
Ta có: \(\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}}=\sqrt{\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2-2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)}\)
\(=\sqrt{\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2-2\cdot\frac{a+b+c}{abc}}=\sqrt{\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2-2\cdot\frac{0}{abc}}\)
\(=\sqrt{\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2}=\left|\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right|\)
Bài toán được chứng minh
Quay trở lại, ta sẽ áp dụng bài toán phụ vào bài chính:
Ta có: \(P=\sqrt{\frac{1}{2^2}+\frac{1}{1^2}+\frac{1}{3^2}}+\sqrt{\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{5^2}}+...+\sqrt{\frac{1}{2^2}+\frac{1}{779^2}+\frac{1}{801^2}}\)
Vì \(2+1+\left(-3\right)=0\) nên:
\(\sqrt{\frac{1}{2^2}+\frac{1}{1^2}+\frac{1}{3^2}}=\sqrt{\frac{1}{2^2}+\frac{1}{1^2}+\frac{1}{\left(-3\right)^2}}=\sqrt{\left(\frac{1}{2}+\frac{1}{1}-\frac{1}{3}\right)^2}=\frac{1}{2}+1-\frac{1}{3}\)
Tương tự ta tính được:
\(\sqrt{\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{5^2}}=\frac{1}{2}+\frac{1}{3}-\frac{1}{5}\) ; ... ; \(\sqrt{\frac{1}{2^2}+\frac{1}{799^2}+\frac{1}{801^2}}=\frac{1}{2}+\frac{1}{799}-\frac{1}{801}\)
\(\Rightarrow P=\frac{1}{2}+1-\frac{1}{3}+\frac{1}{2}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{2}+\frac{1}{799}-\frac{1}{801}\)
\(=\frac{1}{2}\cdot400+\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{799}-\frac{1}{801}\right)\)
\(=200+\frac{800}{801}=\frac{161000}{801}=\frac{a}{b}\Rightarrow\hept{\begin{cases}a=161000\\b=801\end{cases}}\)
\(\Rightarrow Q=161000-801\cdot200=800\)
1. \(x=\frac{1}{9}\) thỏa mãn đk: \(x\ge0;x\ne9\)
Thay \(x=\frac{1}{9}\) vào A ta có:
\(A=\frac{\sqrt{\frac{1}{9}}+1}{\sqrt{\frac{1}{9}}-3}=-\frac{1}{2}\)
2. \(B=...\)
\(B=\frac{3\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}+\frac{\sqrt{x}\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}-\frac{4x+6}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(B=\frac{3x-9\sqrt{x}+x+3\sqrt{x}-4x-6}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(B=\frac{-6\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
3. \(P=A:B=\frac{\sqrt{x}+1}{\sqrt{x}-3}:\frac{-6\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(P=\frac{\sqrt{x}+3}{-6}\)
Vì \(\sqrt{x}+3\ge3\forall x\)\(\Rightarrow\frac{\sqrt{x}+3}{-6}\le\frac{3}{-6}=-\frac{1}{2}\)
hay \(P\le-\frac{1}{2}\)
Dấu "=" xảy ra <=> x=0
Dấu ở giữa là cộng chứ nhỉ??
Đặt \(y=\sqrt[3]{a+\frac{a+1}{3}\sqrt{\frac{8a-1}{3}}};z=\sqrt[3]{a-\frac{a+1}{3}\sqrt{\frac{8a-1}{3}}}\)
\(\Rightarrow\hept{\begin{cases}y^3+z^3=2a\\yz=\sqrt[3]{a^2-\frac{\left(a+1\right)^2\left(8a-1\right)}{27}}\\y+z=x\end{cases}=\sqrt[3]{\frac{27a^2-\left(8a^3+15a^2+6a-1\right)}{27}}=\sqrt[3]{\frac{\left(1-2a\right)^3}{27}}=\frac{1-2a}{3}}\)
Thay vào ta được:
\(x^3=\left(y+z\right)^3=y^3+z^3+3yz\left(y+z\right)\)\(=2a+3\frac{1-2a}{3}x=2a+\left(1-2a\right)x\)
\(\Leftrightarrow x^3-\left(1-2a\right)x-2a=0\)
\(\Leftrightarrow x^3-x+2ax-2a=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^2+2a+x\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\\x^2+2a+x=0\end{cases}}\)
Đến đây thì có lẽ là sẽ cm được \(x^2+2a+x>0\), mình chưa tìm ra cách cm.
KL : \(x=1\inℤ\)
A=a^3/24+a^2/8+a/12
= (a^3+ 3 a^2+ 2) /24 = a(a+1)(a+2)/24
ta cần CM a(a+1)(a+2) chia hết cho 24
để dễ hiểu mình sẽ trình bày cụ thể, còn nếu muốn rút gọn thì b có thể tự trình bày lại nhá :D
do a chắn => a=4k hoặc a=4k+2 (k thuộc Z)
TH1: a=4k; a+2=4k+2
=> a(a+1)(a+2) chia hết cho 4*2=8
và trong 3 số a, a+1, a+2 có 1 số chia hết cho 3 mà (3;8)=1
=> a(a+1)(a+2) chia hết cho 24
TH2: a=4k+2, a+2= 4k+4 (k thuộc Z)
=> a(a+1)(a+2) chia hết cho 4*2=8
và trong 3 số a, a+1, a+2 có 1 số chia hết cho 3 mà (3;8)=1
=> a(a+1)(a+2) chia hết cho 24
vậy A=a^3/24+a^2/8+a/12 luôn có giá trị nguyên
M = a^3+3a^2+2a/24
= (a^3+a^2)+(2a^2+2a)/24
= (a+1).(a^2+2a)/24 = a.(a+1).(a+2)/24
a chẵn nên a có dạng 2k ( k thuộc Z )
Khi đó : M = 2k.(2k+1).(2k+2)/24 = k.(2k+1).(k+1)/6
Đặt k.(k+1).(2k+1) = B
Ta thấy : k;k+1 là 2 số nguyên liên tiếp nên có 1 số chia hết cho 2 =>B chia hết cho 2 (1)
Nếu k chia hết cho 3 => B chia hết cho 3
Nếu k chia 3 dư 1 => 2k+1 chia hết cho 3 => B chia hết cho 3
Nếu k chia 3 dư 2 => k+1 chia hết cho 3 => B chia hết cho 3
Vậy B chia hết cho 3 (2)
Từ (1) và (2) => B chia hết cho 6 ( vì 2 và 3 là 2 số nguyên tố cùng nhau )
=> M = B/6 là 1 số nguyên