Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left(2+2^2\right)+...+\left(2^{2003}+2^{2004}\right)\)
\(A=2.\left(1+2\right)+...+2^{2003}.\left(1+2\right)\)
\(A=2.3+...+2^{2003}.3\)
=> A chia hết cho 3
Các cái còn lại tương tự
chứng minh chia hết cho 7 thì gộp 3 cái lại 1
chia hết cho 15 là gộp 4 cái lại
A= (2+22)+(23+24)+...+(259+260)
A=2.(1+2)+23.(1+2)+...+259.(1+2)
A=2.3+23.3+...+259.3
A=3.(2+23+...+259)
Vì 3 chia hết cho 3 => 3.(2+23+...+259) chia hết cho 3
=>A chia hết cho 3
A= (2+22+23)+...+(258+259+260)
A=2.(1+2+22)+...+258.(1+2+22)
A=2.7+...+258.7
A=7.(2+...+258)
Vì 7 chia hết cho 7 =>7.(2+...+258) chia hết cho 7
=>A chia hết cho 7
A= (2+22+23+24)+...+(257+258+259+260)
A=2.(1+2+22+23)+...+257.(1+2+22+23)
A=2.15 +...+257.15
A=15.(2+...+257)
vì 15 chia hết cho 15 =>15.(2+...+25) chia hết cho 15
=>A chia hết cho 15
A= 2+ \(2^2\)+ \(2^3\)+...+ \(2^{30}\)+ \(2^{31}\).
A=( 2+ \(2^2\))+ \(2^2\)( 2+ \(2^2\))+ \(2^4\)( 2+ \(2^2\))+...+ \(2^{30}\)( 2+ \(2^2\)).
A=6+ \(2^2\)x 6+ \(2^4\)x 6+...+ \(2^{30}\)x 6.
A= 6( \(2^2\)+ \(2^4\)+...+ \(2^{30}\)).
=> A\(⋮\) 3 vì 6\(⋮\) 3.
2004 chia hết cho 3 và cho 4 nên ta có thể lập tổ hợp sau:
\(A=\left(2+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{2002}+2^{2003}+2^{2004}\right)\)
\(A=2\cdot\left(1+2+4\right)+2^4\cdot\left(1+2+4\right)+...+2^{2002}\cdot\left(1+2+4\right)=7\cdot\left(2+2^4+...+2^{2002}\right)\)
=> A chia hết cho 7. (1)
Mặt khác:
\(A=\left(2+2^2+2^3+2^4\right)+\left(2^5+2^6+2^7+2^8\right)+...+\left(2^{2001}+2^{2002}+2^{2003}+2^{2004}\right)\)
\(A=2\cdot\left(15\right)+2^5\cdot\left(15\right)+...+2^{2001}\cdot\left(15\right)=15\cdot\left(2+2^5+...+2^{2001}\right)\)=> Achia hết cho 15 (2)
A chia hết cho 15 có nghĩa là A cũng chia hết cho 3 (3).
Từ (1) (2) (3) suy ra ĐPCM.
Bài 1:
a) +) \(A=2+2^2+...+2^{2004}\)
\(\Rightarrow A=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{2003}+2^{2004}\right)\)
\(\Rightarrow A=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{2003}\left(1+2\right)\)
\(\Rightarrow A=2.3+2^3.3+...+2^{2003}.3\)
\(\Rightarrow A=\left(2+2^3+...+2^{2003}\right).3⋮3\)
\(\Rightarrow A⋮3\left(đpcm\right)\)
+) \(A=2+2^2+...+2^{2004}\)
\(\Rightarrow A=\left(2+2^2+2^3\right)+...+\left(2^{2002}+2^{2003}+2^{2004}\right)\)
\(\Rightarrow A=2\left(1+2+2^2\right)+...+2^{2002}\left(1+2+2^2\right)\)
\(\Rightarrow A=2.7+...+2^{2002}.7\)
\(\Rightarrow A=\left(2+...+2^{2002}\right).7⋮7\)
\(\Rightarrow A⋮7\left(đpcm\right)\)
+) \(A=2+2^2+....+2^{2004}\)
\(\Rightarrow A=\left(2+2^2+2^3+2^4\right)+...+\left(2^{2001}+2^{2002}+2^{2003}+2^{2004}\right)\)
\(\Rightarrow A=2\left(1+2+2^2+2^3\right)+...+2^{2001}\left(1+2+2^2+2^3\right)\)
\(\Rightarrow A=2.15+...+2^{2001}.15\)
\(\Rightarrow A=\left(2+...+2^{2001}\right).15⋮15\)
\(\Rightarrow A⋮15\left(đpcm\right)\)
b) \(B=1+3+3^2+...+3^{99}\)
\(\Rightarrow B=\left(1+3+3^2+3^3\right)+...+\left(3^{96}+3^{97}+3^{98}+3^{99}\right)\)
\(\Rightarrow B=\left(1+3+9+27\right)+...+3^{96}\left(1+3+3^2+3^3\right)\)
\(\Rightarrow B=40+...+3^{96}.40\)
\(\Rightarrow B=\left(1+...+3^{96}\right).40⋮40\)
\(\Rightarrow B⋮40\left(đpcm\right)\)
\(A=2+2^2+2^3+2^4+...+2^{2004}\)
\(A=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{2003}+2^{2004}\right)\)
\(A=6+2^2\left(2+2^2\right)+...+2^{2002}\left(2+2^2\right)\)
\(A=6+2^2\cdot6+...+2^{2002}\cdot6\)
\(A=6\left(1+2^2+...+2^{2002}\right)\) \(⋮\) \(3\)
chia hết cho 7 thì hết hợp 3 số, chia hết cho 15 thì hết hợp 4 số
Bạn tham khảo link này nhé :
https://olm.vn/hoi-dap/detail/12446658194.html
~Study well~
#SJ