\(^2\) - x\(^2\)y
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 9 2018

\(\left(xy+z\right)^2-x^2y^2\)

\(=\left(xy\right)^2+2xyz+z^2-\left(xy\right)^2\)

\(=2xyz+z^2\)

\(=z\left(2xy+z\right)\left(đpcm\right)\)

3 tháng 9 2018

\(VT=\left(xy+z\right)^2-x^2y^2=\left(xy^2\right)+2xyz+z^2-x^2y^2\)

\(=x^2y^2+2xyz+z^2-x^2y^2=z^2+2xyz\)

\(=z\left(2xy+z\right)=VP\Rightarrow dpcm\)

9 tháng 7 2018

a/\(\left(x-1\right)\left(x^2+x+1\right)=x^3+x^2+x-x^2-x-1=x^3-1\left(đpcm\right)\)

b/ \(\left(x^3+x^2y+xy^2+y^3\right)\left(x-y\right)=x^4-x^3y+x^3y-x^2y^2+x^2y^2-xy^3+xy^3-y^4=x^4-y^4\left(đpcm\right)\)

c/ \(\left(x+y+z\right)^2=\left(x+y+z\right)\left(x+y+z\right)=x^2+xy+xz+y^2+xy+yz+z^2+zx+yz=x^2+y^2+z^2+2xy+2yz+2zx\left(đpcm\right)\)

d/ \(\left(x+y+z\right)^3=\left(x+y\right)^3+3\left(x+y\right)^2z+3z^2\left(x+y\right)+z^3\)

\(=\left(x+y\right)^3+3z\left(x^2+2xy+y^2\right)+3z^2\left(x+y\right)+z^3\)

\(=x^3+3x^2y+3xy^2+y^3+3x^2z+6xyz+3y^2z+3z^2x+3yz^2+z^3\)

\(=x^3+y^3+z^3+3xyz+3x^2y+3xy^2+3x^2z+3y^2z+3y^2x+3yz^2+3xyz\)

\(=x^3+y^3+z^3+\left(x+z\right)\left(3xy+3xz+3y^2+3yz\right)\)

\(=x^3+y^3+z^3+\left(x+z\right)\left[3x\left(y+z\right)+3y\left(y+z\right)\right]\)

\(=x^3+y^3+z^3+\left(x+z\right)\left(y+z\right)\left(3x+3y\right)\)

\(=x^3+y^3+z^3+3\left(x+y\right)\left(y+z\right)\left(z+x\right)\) (đpcm)

9 tháng 7 2018

a, Xét vế trái ta có:

(x-1)(x^2+ x+1)=x^3+ x^2+ x- x^2- x-1

=x^3+ (x^2- x^2)+(x-x)-1

=x^3-1

Vậy...

b,Xét vế trái ta có:(x^3+ x^2y+ xy^2+ y^3)(x-y)

=x^4- x^3y+ x^3y- x^2- y^2+ x^2y^2- xy^3+ xy^3- y^4

=x^4-y^4

Vậy ........

c, Xét vế trái ta có:

(x+y+z)^2=(x+y+z)(x+y+z)

=x^2+ xy+ xz+ yx+y^2+ yz+ zx+ zy+ z^2

=x^2+ y^2+ z^2+ 2xy+ 2xz+ 2yz

Vậy...............

d, Xé vế trái ta có:

(x+y+x)^3=(x+y+z)(x+y+z)(x+y+z)(x+y+z)

=(x^2+y^2+z^2+2xy+2xz+2yz)(x+y+z)

=x^3+ xy^2+ xz^2+ 2x^2y+ 2xyz+ 2x^2z+ x^2y+ y^3+ yz^2+2xy^2+ 2y^2z+z^3+ 2xyz+ x^2z+ y^2z+2xyz+ 2yz^2+ 2xz^2

=x^3+ 3xy^2+ 6xy+ 3x^2y+3xz^2+ 3x^2z+ 3yz^2+ y^3z^3 (1)

Xét vế phải ta có:x^3+ y^3+ z^3+ 3(x+y)(x+y)(y+z)

=x^3+ y^3+ z^3+ 3(xy+ xz+ y^2+ yz)(z+x)

=x^3+ y^3+ z^3+ 3(xyz+ xz^2+ y^2z+ yz^2+ x^2y+ x^2z+ xy^2+xyz)

=x^2+ y^3+ z^3 +3(2xyz+ xz^2+ y^2z+ yz^2+x^2y+x^2z+ xy^2)

=x^3+ y^3+ z^3+6xyz+ 3xz^2+ 3y^2z+3yz^2+ 3x^2y+3x^2z+3xy^2(2)

Từ (1) và (2)=>.......

28 tháng 12 2016

hay ak m hjhj

28 tháng 12 2016

rất cần có những bài như thế này để mn tham khảo, cám ơn bn

25 tháng 12 2018

Ngu như bò đực lặt.

Bài này mà làm ko ra.......................................a

25 tháng 12 2018

Nếu a thông minh thì lm giúp e đi.

31 tháng 8 2019

a) = (x2 - 2xy +y2) + (x2 +x +2)

=(x-y)2 + (x+1/2)2 +7/4 >0 với mọi x,y

=> không tồn tại các số x,y thỏa mãn hằng đẳng thức đã cho.

b) = (x2-2x+1)+(9y2+12y+4)+(4z2-4z+1) + 14=(x-1)2+(3y+2)2+(2z+1)2+14>0 với mọi x,y ,z

=> không tồn tại giá trị x,y,z thỏa mãn đẳng thức đã cho

27 tháng 6 2017

Bài 1:

a) -16 +(x-3)2

<=> (x-3)2-16

<=> (x-3)2 -42

<=> (x-3-4)(x-3+4)

<=> (x-7)(x+1)

b) 64+16y+y2

<=> y2 + 2.8.y + 82

<=> (y+8)2

c) \(\dfrac{1}{8}-8x^3\)

\(\Leftrightarrow\left(\dfrac{1}{2}\right)^3-\left(2x\right)^3\)

\(\Leftrightarrow\left(\dfrac{1}{2}-2x\right)\left(\dfrac{1}{4}+x+4x^2\right)\)

d)\(x^2-x+\dfrac{1}{4}\)

\(\Leftrightarrow x^2-2.\dfrac{1}{2}.x+\left(\dfrac{1}{2}\right)^2\)

\(\Leftrightarrow\left(x-\dfrac{1}{2}\right)^2\)

e) x4 + 4x2 + 4

<=> (x2)2 + 2.2.x2 +22

<=> (x2 + 2)2

g)\(8x^3+60x^2y+150xy^2+125y^3\)

\(\Leftrightarrow\left(2x+5y\right)^3\)

28 tháng 6 2017

Ban giup minh bai 2 luon voi nha Hậu Trần Công

17 tháng 6 2017

\(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0\)

\(\Rightarrow xy+yz+xz=0\)

\(\Rightarrow\left\{{}\begin{matrix}xy=-yz--xz\\yz=-xy-xz\\xz=-xy-xz\end{matrix}\right.\)

\(\dfrac{yz}{x^2+2yz}=\dfrac{yz}{x^2+yz-xy-xz}=\dfrac{yz}{\left(x-y\right)\left(x-z\right)}\)

CMTT:

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{xz}{y^2+2xz}=\dfrac{xz}{\left(x-y\right)\left(x-z\right)}\\\dfrac{xy}{z^2+2xy}=\dfrac{xy}{\left(x-y\right)\left(x-z\right)}\\\dfrac{yz}{x^2+2yz}=\dfrac{yz}{\left(x-y\right)\left(x-z\right)}\end{matrix}\right.\)

A=\(\dfrac{xz}{\left(x-y\right)\left(x-z\right)}+\dfrac{xy}{\left(x-y\right)\left(x-z\right)}+\dfrac{yz}{\left(x-y\right)\left(x-z\right)}\)

\(A=\dfrac{xz+xy+yz}{\left(x-y\right)\left(x-z\right)}\left(1\right)\)

\(xy+yz+xz=0\)

Từ \(\Rightarrow\dfrac{xz+xy+yz}{\left(x-y\right)\left(x-z\right)}=0\)

Vậy A=0

29 tháng 12 2017

Nhân ra thôi

30 tháng 12 2017

\(A=\left(xy+yz+xz\right)\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)-xyz\left(\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}\right)\\ =y+x+\dfrac{xy}{z}+y+z+\dfrac{yz}{x}+x+z+\dfrac{xz}{y}-\left(\dfrac{yz}{x}+\dfrac{xz}{y}+\dfrac{xy}{z}\right)\\ =2\left(x+y+z\right)=2.2018=4036\)

17 tháng 8 2019

a, \(\left(x+y+z\right)^2=\left(x+y\right)^2+2\left(x+y\right)z+z^2\)\(=x^2+2xy+y^2+2zx+2zy+z^2=x^2+y^2+z^2+2xy+2yz+2zx\)(đpcm)

b, \(\left(x+y+z\right)^3=\left(\left(x+y\right)+z\right)^3=\left(x+y\right)^3+z^3+3\left(x+y\right)z\left(x+y+z\right)\)

\(=x^3+y^3+3xy\left(x+y\right)+z^3+3\left(x+y\right)z\left(x+y+z\right)\)

\(=x^3+y^3+z^3+3\left(x+y\right)\left(xy+z\left(x+y+z\right)\right)\)

\(=x^3+y^3+z^3+3\left(x+y\right)\left(xy+zx+zy+z^2\right)\)

\(=x^3+y^3+z^3+3\left(x+y\right)\left(y\left(x+z\right)+z\left(x+z\right)\right)\)

\(=x^3+y^3+z^3+3\left(x+y\right)\left(x+z\right)\left(y+z\right)\)