\(\frac{a}{\sqrt{b}}+\frac{b}{\sqrt{a}}\ge\sqrt{a}+\sqrt{b}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 6 2019

\(\frac{a}{\sqrt{b}}+\frac{b}{\sqrt{a}}=\frac{\left(\sqrt{a}\right)^2}{\sqrt{b}}+\frac{\left(\sqrt{b}\right)^2}{\sqrt{a}}\ge\frac{\left(\sqrt{a}+\sqrt{b}\right)^2}{\sqrt{a}+\sqrt{b}}=\sqrt{a}+\sqrt{b}\left(dpcm\right)\)

Y
21 tháng 6 2019

Theo bđt Cauchy :

\(\frac{a}{\sqrt{b}}+\sqrt{b}\ge2\sqrt{\frac{a}{\sqrt{b}}\cdot\sqrt{b}}=2\sqrt{a}\)

Dấu "=" \(\Leftrightarrow\frac{a}{\sqrt{b}}=\sqrt{b}\Leftrightarrow a=b\)

+ Tươ tự ta cm đc : \(\frac{b}{\sqrt{a}}+\sqrt{a}\ge2\sqrt{b}\)

Dấu "=" <=> a = b

Do đó : \(\frac{a}{\sqrt{b}}+\frac{b}{\sqrt{a}}+\sqrt{a}+\sqrt{b}\ge2\left(\sqrt{a}+\sqrt{b}\right)\)

=> đpcm

Dấu "=" <=> a = b

NV
22 tháng 6 2019

a/

\(=\frac{a+b}{b^2}.\frac{\left|a\right|.b^2}{\left|a+b\right|}=\frac{\left(a+b\right).b^2.\left|a\right|}{b^2\left(a+b\right)}=\left|a\right|\)

b/

\(=\frac{\left(\sqrt{a}+\sqrt{b}\right)^2}{2\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}-\frac{\left(\sqrt{a}-\sqrt{b}\right)^2}{2\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}+\frac{4b}{2\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}\)

\(=\frac{4\sqrt{ab}+4b}{2\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}=\frac{2\sqrt{b}\left(\sqrt{a}+\sqrt{b}\right)}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)}=\frac{2\sqrt{b}}{\sqrt{a}-\sqrt{b}}\)

10 tháng 6 2019

a)\(\sqrt{x}+1>\sqrt{x+1}\) (x>0)

Có:\(\left(\sqrt{x}+1\right)^2=x+2\sqrt{x}+1\left(1\right)\) (x>0)

\(\sqrt{\left(x+1\right)^2}=x+1\) (2) (x>0)

từ (1) và (2) =>(đpcm)

b)\(\sqrt{x^2+1}>x\)

Có:\(\sqrt{\left(x^2+1\right)^2}=x^2+1\left(1\right)\)

x2=x2 (2)

Từ (1) và (2) =>(đpcm)

c)\(\frac{1}{2}+a+b\ge\sqrt{a}+\sqrt{b}\left(a,b\ge0\right)\)

Vì a,b >or= 0

=>\(a+b\ge\sqrt{a}+\sqrt{b}\)

\(\Rightarrow\frac{1}{2}+a+b\ge\sqrt{a}+\sqrt{b}\) (đáng lẽ 1/2+a+b> mới phải)

18 tháng 6 2019

Tải app giải toán và kết bạn trao đổi nào cả nhà: https://www.facebook.com/watch/?v=485078328966618

1 tháng 6 2021

a) 

\(\left(\sqrt{a+\sqrt{b}}\ne\sqrt{a-\sqrt{b}}\right)^2\)

\(=a+\sqrt{b}\ne2\sqrt{\left(a+\sqrt{b}\right)\left(a-\sqrt{b}\right)}+a-\sqrt{b}\)

\(=2a\ne2\sqrt{a^2-b}=2\left(a\ne\sqrt{a^2}-b\right)\)

\(\Rightarrow\sqrt{a+\sqrt{b}}\ne\sqrt{a-\sqrt{b}}=\sqrt{2\left(a\ne\sqrt{a^2}-b\right)}\)

\(\Rightarrowđpcm\)

1 tháng 6 2021

b)

\(\left(\sqrt{\frac{a+\sqrt{a^2-b}}{2}\ne}\sqrt{\frac{a-\sqrt{a^2-b}}{2}}\right)^2\)

\(=\frac{a+\sqrt{a^2-b}}{2}\ne\sqrt[2]{\frac{a+\sqrt{a^2-b}}{2}.\frac{a-\sqrt{a^2-b}}{2}}+\frac{a-\sqrt{a^2-b}}{2}\)

\(=\frac{a}{2}+\frac{\sqrt{a^2-b}}{2}\ne\sqrt[2]{\frac{a^2-a^2+b}{2.2}}+\frac{a}{2}-\frac{\sqrt{a^2-b}}{2}\)

\(=a\ne2\frac{\sqrt{b}}{2}=a\ne\sqrt{b}\)

\(\Rightarrow\sqrt{\frac{a+\sqrt{a^2-b}}{2}}\ne\sqrt{\frac{a-\sqrt{a^2-b}}{2}}=\sqrt{a\ne\sqrt{b}}\)

\(\Rightarrowđpcm\)

17 tháng 9 2020

Mình chỉ thấy duy nhất cái đẳng thức.