\(\ge\)8

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 5 2018

a)

<=>(x-y)+(x-y)/xy≥0

(x-y)(1-1/xy)≥0

x,y≥1=> 1/(xy)≤1=(1-1/(xy)≥0

x≥y=>x-y≥0

=> (x-y)(1-1/xy)≥0 => dccm

dang thuc khi x=y

or x.y=1

\(1.\)\(Cho\)\(a,b\ge0.\)   \(CM: \)\(a^3b^3\left(a^2-ab+b^2\right)\le\frac{\left(a+b\right)^8}{256}.\)\(2.\)\(Cho\)\(a,b,c\ge0\) và \(\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+c}\ge2.\)   \(CM:\)\(abc\le\frac{1}{8}.\)\(3.\)\(Cho\)\(a,b,c,d\ge0\) và \(\frac{a}{1+a}+\frac{2b}{b+1}+\frac{3c}{1+c}\le1.\)   \(CM:\)\(ab^2c^3< \frac{1}{5^6}.\)\(4.\)Với ∀\(a,b,c\ge0.\)   \(CM:\)\(a^4b^2c+b^4c^2a+c^4a^2b\le...
Đọc tiếp

\(1.\)\(Cho\)\(a,b\ge0.\)

   \(CM: \)\(a^3b^3\left(a^2-ab+b^2\right)\le\frac{\left(a+b\right)^8}{256}.\)
\(2.\)\(Cho\)\(a,b,c\ge0\) và \(\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+c}\ge2.\)
   \(CM:\)\(abc\le\frac{1}{8}.\)
\(3.\)\(Cho\)\(a,b,c,d\ge0\) và \(\frac{a}{1+a}+\frac{2b}{b+1}+\frac{3c}{1+c}\le1.\)
   \(CM:\)\(ab^2c^3< \frac{1}{5^6}.\)

\(4.\)Với ∀\(a,b,c\ge0.\)
   \(CM:\)\(a^4b^2c+b^4c^2a+c^4a^2b\le a^7+b^7+c^7.\)

\(5.\)\(Cho\)\(a,b,c>0.\)
   \(CM:\)\(\frac{a^5}{b^3c}+\frac{b^5}{c^3a}+\frac{c^5}{a^3b}\ge a+b+c.\)

\(6.\)\(Cho\)\(a,b,c>0.\)
   \(CM:\)\(\frac{a^3b}{c}+\frac{b^3c}{a}+\frac{c^3a}{b}\ge ab^2+bc^2+ca^2.\)

\(7.\)\(Cho\)\(a,b,c>0\) và \(a+b+c=3.\)
   \(CM:\)\(\frac{a}{b^2+1}+\frac{b}{c^2+1}+\frac{c}{a^2+1}\ge\frac{3}{2}.\)
\(8.\)\(Cho\)\(a,b,c>0.\)
   \(CM:\)\(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\ge\frac{a+b+c}{2}.\)
\(9.\)\(Cho\)\(a,b,c>0\) và \(a+b+c=1.\)
   \(CM:\)\(\frac{ab}{c+1}+\frac{bc}{a+1}+\frac{ca}{b+1}\le\frac{1}{4}.\)

\(10.\)\(Cho\)\(a,b,c>0.\)

   \(CM:\)\(\frac{1}{a^2+bc}+\frac{1}{b^2+ac}+\frac{1}{c^2+ab}\le\frac{a+b+c}{2abc}.\)

2
13 tháng 8 2016

\(1.\)\(a^3b^3\left(a^2-ab+b^2\right)\le\frac{\left(a+b\right)^8}{256}\)
\(\Leftrightarrow a^3b^3\left(a^2-ab+b^2\right)\left(a+b\right)\le\frac{\left(a+b\right)^9}{256}\)

\(\Leftrightarrow a^3b^3\left(a+b\right)^3\left(a^3+b^3\right)\le\frac{\left(a+b\right)^{12}}{256}\)

\(VT=ab\left(a+b\right).ab\left(a+b\right).ab\left(a+b\right).\left(a^3+b^3\right)\)

     \(\le\left(\frac{ab\left(a+b\right)+ab\left(a+b\right)+ab\left(a+b\right)+\left(a^3+b^3\right)}{4}\right)^4\)

     \(\le\frac{\left(a^3+3a^2b+3ab^2+b^3\right)^4}{256}\)

     \(\le\frac{\left(a+b\right)^{12}}{256}\left(đpcm\right).\)

14 tháng 8 2016

\(2.\)    \(\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+c}\ge2\)
     \(\Leftrightarrow\frac{1}{1+a}\ge1-\frac{1}{1+b}+1-\frac{1}{1+c}\)

                       \(\ge\frac{b}{1+b}+\frac{c}{1+c}\) 
                       \(\ge2\sqrt{\frac{bc}{\left(1+b\right)\left(1+c\right)}}\)

   \(\Rightarrow\hept{\begin{cases}\frac{1}{1+b}\ge2\sqrt{\frac{ac}{\left(1+a\right)\left(1+c\right)}}\\\frac{1}{1+c}\ge2\sqrt{\frac{ab}{\left(1+a\right)\left(1+b\right)}}\end{cases}}\)
   \(\Rightarrow\frac{1}{1+a}.\frac{1}{1+b}.\frac{1}{1+c}\ge8\sqrt{\frac{a^2b^2c^2}{\left(1+a\right)^2.\left(1+b\right)^2.\left(1+c\right)^2}}\)\(\frac{1}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}\ge\frac{8abc}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}\)
\(\Leftrightarrow\)                                 \(1\ge8abc\)

\(\Leftrightarrow\)                            \(abc\ge\frac{1}{8}\left(đpcm\right).\)


 

10 tháng 7 2019

Bài 1:Thêm đk a > b > 0

\(VT=a+\frac{1}{b\left(a-b\right)}=\left(a-b\right)+b+\frac{1}{b\left(a-b\right)}\)

Áp dụng BĐT Cô si cho 3 số dương ta có đpcm.

Đẳng thức xảy ra khi \(a-b=b=\frac{1}{b\left(a-b\right)}\Leftrightarrow a=2;b=1\)

Bài 2: BĐT \(\Leftrightarrow\left(a-b\right)+\left(b+1\right)+\frac{4}{\left(a-b\right)\left(b+1\right)^2}\ge4\) (Thêm 1 vào hai vế +bớt + thêm b)

\(\Leftrightarrow\left(a-b\right)+\frac{1}{2}\left(b+1\right)+\frac{1}{2}\left(b+1\right)+\frac{4}{\left(a-b\right)\left(b+1\right)^2}\ge4\) (tách \(b+1=\frac{1}{2}\left(b+1\right)+\frac{1}{2}\left(b+1\right)\))

Áp dụng BĐT Cô si cho 4 số dương ta thu được đpcm.

Đẳng thức xảy ra khi \(a-b=\frac{1}{2}\left(b+1\right)=\frac{4}{\left(a-b\right)\left(b+1\right)^2}\)

\(\Leftrightarrow a=2;b=1\) (chị giải rõ ra nha, em làm tắt thôi)

Bài 3 để sau ạ, có lẽ cần thêm đk b > 0. Khi đó a/ b > 1 tức là a > b và > 0

10 tháng 7 2019

Dự đoán điểm rơi tại a = 1; b = 1/2

Em nghĩ ra rồi nhưng ko chắc đâu.

Bài 3: Dễ thấy b > 0 => a > b > 0

Trước tiên cần giảm bậc cái đã:D

\(2a^3+1=a^3+a^3+1\ge3\sqrt[3]{a^6.1}=3a^2\)

Đẳng thức xảy ra khi a = 1 (1)

Do vậy: \(\frac{2a^3+1}{4b\left(a-b\right)}\ge\frac{3a^2}{4ab-4b^2}\). Do a > b > 0. Chia hai vế cho b2 ta được:

\(\frac{2a^3+1}{4b\left(a-b\right)}\ge\frac{3\left(\frac{a}{b}\right)^2}{4.\frac{a}{b}-4}=\frac{3t^2}{4t-4}\) với \(t=\frac{a}{b}>1\)

Ta cần chứng minh \(\frac{3t^2}{4t-4}\ge3\Leftrightarrow\frac{t^2}{4t-4}\ge1\Leftrightarrow t^2-4t+4\ge0\Leftrightarrow\left(t-2\right)^2\ge0\) (đúng)

Đẳng thức xảy ra khi a = 2b tức là theo (1) suy ra \(b=\frac{1}{2}\)

Ta có đpcm.

22 tháng 1 2018

dự đoán của chúa Pain A=B=C=1 thế thôi éo nói nhiều làm j :)

áp dụng cô si ta có

\(\frac{3}{a+b+c}+\frac{\left(a+b+C\right)}{3}\ge2\sqrt{\frac{3.\left(a+b+c\right)}{\left(a+b+c\right).3}}=2.\)

ÁP DỤNG co si tiếp tao có  \(\frac{2}{abc}+2abc\ge2\sqrt{\frac{4abc}{abc}=}=4\)

theo cô si ta có  \(a+B+c\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\)

\(\frac{9}{a+b+c}\ge2\sqrt{3}+4\)

\(3.\left\{\frac{3}{\left(a+b+c\right)}+\frac{\left(a+b+c\right)}{3}\right\}\ge3.\left\{2\sqrt{\frac{3\left(a+b+c\right)}{3\left(a+b+c\right)}}\right\}=6\)

từ 1 và 2 ta được

\(6\ge2+4\)

bây giờ mày thử ấn máy tính đi xem 2+4= bao nhiêu rồi tích cho tao nhé xDDDDD

22 tháng 1 2018

bạn ơi cái chỗ \(\frac{9}{a+b+c}\ge2\sqrt{3}+4.\) là t viết nhầm nhé sủa lại thành   \(\frac{9}{a+b+c}\ge2+4\) nhé  

NV
11 tháng 2 2020

\(\frac{1}{1+a^2}+\frac{1}{1+b^2}\ge\frac{2}{1+ab}\Leftrightarrow\frac{2+a^2+b^2}{\left(1+a^2+b^2+a^2b^2\right)}\ge\frac{2}{1+ab}\)

\(\Leftrightarrow\left(1+ab\right)\left(2+a^2+b^2\right)\ge2a^2b^2+2a^2+2b^2+2\)

\(\Leftrightarrow ab\left(a^2+b^2-2ab\right)-\left(a^2+b^2-2ab\right)\ge0\)

\(\Leftrightarrow\left(ab-1\right)\left(a-b\right)^2\ge0\)

b/ \(\frac{1}{1+a^4}+\frac{1}{1+b^4}+\frac{2}{1+b^4}\ge\frac{2}{1+a^2b^2}+\frac{2}{1+b^4}\ge\frac{4}{1+ab^3}\)

\(\Rightarrow\frac{1}{1+a^4}+\frac{3}{1+b^4}\ge\frac{4}{1+ab^3}\)

Hoàn toàn tương tự: \(\frac{1}{1+b^4}+\frac{3}{1+c^4}\ge\frac{4}{1+bc^3}\); \(\frac{1}{1+c^4}+\frac{3}{1+a^4}\ge\frac{4}{1+a^3c}\)

Cộng vế với vế ta có đpcm

11 tháng 9 2017

bài 1) 

ta có \(\left(a-b\right)^2+\left(a-1\right)^2+\left(b-1\right)^2\ge0\)

\(\Rightarrow a^2-2ab+b^2+a^2-2a+1+b^2-2b+1\ge0\)

=> \(a^2+b^2+1\ge ab+a+b\)

11 tháng 9 2017

ý 1 mk làm òi còn 2 ý kia chưa làm thui

7 tháng 8 2019

Hỏi đáp Toán

Bài 1:

Ta có: a,b không âm(gt)

\(\Leftrightarrow\sqrt{a}\)\(\sqrt{b}\) được xác định

Ta có: \(\frac{a+b}{2}\ge\sqrt{ab}\)

\(\Leftrightarrow a+b\ge2\sqrt{ab}\)

\(\Leftrightarrow a+b-2\sqrt{ab}\ge0\)

\(\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\)(luôn đúng)

7 tháng 10 2017

2/ GT <=> \(\left(a+b+c\right)abc\ge ab+bc+ca\)

\(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\ge\frac{\left(a+b+c\right)^2}{ab+bc+ca}\ge\frac{\left(a+b+c\right)^2}{\left(a+b+c\right)abc}=\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\)

Sao hôm thứ 7 nghỉ