\(\frac{1}{2^2}\)+\(\frac{1}{3^2}\)+
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 8 2016

B = \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+\frac{1}{8^2}<1\)

\(B<\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}\)

\(B<1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}\)

\(B<1-\frac{1}{8}<1\)

17 tháng 8 2016

\(B=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+\frac{1}{8^2}\)

\(B< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}\)

\(B< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}\)

\(B< 1-\frac{1}{8}< 1\)

9 tháng 8 2019

 Ta xét A= \(\frac{1}{5^2}+\frac{1}{6^2}+..+\frac{1}{100^2}\)

\(\frac{1}{5^2}+\frac{1}{6^2}+...+\frac{1}{100^2}>\frac{1}{5.6}+\frac{1}{6.7}...+\frac{1}{100.101}\)

=> \(A>\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{100}-\frac{1}{101}\)

=> \(A>\frac{1}{5}-\frac{1}{101}\)

=> \(A>\frac{96}{505}>\frac{96}{576}=\frac{1}{4}\)

Ta có : \(A< \frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{99.100}\)

=> \(A< \frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{99}-\frac{1}{100}\)

=> \(A< \frac{1}{4}-\frac{1}{100}\)

=> \(A< \frac{6}{25}< \frac{6}{24}=\frac{1}{4}\)

9 tháng 8 2019

dễ mà k đi

6 tháng 5 2017

Đặt \(A=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+\frac{1}{5\cdot6}+\frac{1}{6\cdot7}+\frac{1}{7\cdot8}\)

Ta có :\(\frac{1}{2^2}< \frac{1}{1\cdot2};\frac{1}{3^2}< \frac{1}{2\cdot3}\)

\(A=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{7}-\frac{1}{8}\)

\(A=1-\frac{1}{8}< 1\)

Nên : \(B< A< 1\left(đpcm\right)\)

6 tháng 5 2017

cảm ơn bạn

26 tháng 4 2018

\(a)\) Ta có : 

\(\frac{1}{2^2}< \frac{1}{1.2}\)

\(\frac{1}{3^2}< \frac{1}{2.3}\)

\(\frac{1}{4^2}< \frac{1}{3.4}\)

\(............\)

\(\frac{1}{100^2}< \frac{1}{99.100}\)

\(\Rightarrow\)\(A=1+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< 1+\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

\(\Rightarrow\)\(A< 1+\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(\Rightarrow\)\(A< 1+1-\frac{1}{100}\)

\(\Rightarrow\)\(A< 2-\frac{1}{100}< 2\)

\(\Rightarrow\)\(A< 2\) ( đpcm ) 

Vậy \(A< 2\)

Chúc bạn học tốt ~ 

26 tháng 4 2018

Cảm ơn bạn nhiều lắm

7 tháng 8 2016

Đặt \(P=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\)

Có \(\frac{1}{2^2}< \frac{1}{1.2}\)

\(\frac{1}{3^2}< \frac{1}{2.3}\)

...........

\(\frac{1}{100^2}< \frac{1}{99.100}\)

=> \(P< \frac{1}{1.2}+\frac{1}{2.3}+....+\frac{1}{99.100}\)

=> \(P< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{99}-\frac{1}{100}\)

=> \(P< 1-\frac{1}{100}< 1\)
=> P < 1

=> \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< 1\)(Đpcm)

7 tháng 8 2016

Tta có
1/22 < 1/(1.2)= 1-1/2
1/32 <1/(2.3)=1/2-1/3
1/42 <1/(3.4)=1/3-1/4
......
1/1002 < 1/99-1/100
cộng vế với vế ta được 1/22 +1/32+...+1/1002< 1-1/2+1/2-1/3+....+1/99-1/100=1-1/100
=> ĐPCM

14 tháng 7 2018

câu a

Gọi ƯCLN (12n+1,30n+2) là d

⇒(12n+1)⋮d

(30n+2)⋮d

⇒5(12n+1)−2(30n+2)⋮d

⇒60n+5−60n−4⋮d

⇒1⋮dd=1

Vậy ƯCLN (12n+1,30n+2)=1⇔12n+1/30n+2 là p/s tối giản