Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : abcdeg = ab.10000 + cd.100 + eg
= ab.9999 + cd.99 + (ab + cd + eg)
= 99(ab.101 + cd) + (ab + cd + eg)
Vì 99(ab.101 + cd) chia hết cho 11 và (ab + cd + eg) chia hết cho 11
Vậy abcdeg chia hết cho 11
a) Ta có : abcdeg = ab . 10000 + cd . 100 + eg
= ab . 9999 + ab + cd . 99 + cd + eg
= ab . 11 . 909 + ab + cd . 11 . 9 + cd + eg
= (ab . 909 + cd . 9) . 11 + (ab + cd + eg)
Vì (ab . 909 + cd .9) . 11 ⋮ 11 và (ab + cd + eg) ⋮ 11 nên abcdeg ⋮ 11
đề a,b bạn viết sai
c,\(\overline{abcabc}\) :7
Theo bài ra, ta có:
\(\overline{abcabc}\) = 1000\(\overline{abc}\) + \(\overline{abc}\)
=1001\(\overline{abc}\)
=143.7.\(\overline{abc}\)
=> \(\overline{abcabc}\)
Đề a đúng
Đề b sai , mình sửa lại :
\(\overline{aaa}:37\)
Đề c của mình đúng còn bạn không nhìn kĩ đề c và bạn làm sai rồi
bài 2 :
a, abcdeg = ab.10000 + cd.100 + eg
= ab.9999 + ab + cd.99 + cd + eg
= (ab.9999 + cd.99) + (ab+cd+eg)
vì 9999 chia hết cho 11 => ab.9999 chia hết cho 11 (1)
99 chia hết cho 11 => cd.99 chia hết cho 11 (2)
theo đề bài (ab+cd+eg) chi hết cho 11 (3)
(1)(2)(3) => abcdeg chia hết cho 11
phần b thì bạn chứng minh 10^28 + 8 chi hết cho 8 và 9 là được
abcd=100.ab+cd =99ab+(ab+cd)
vì 99 chia hết cho 11=> 99ab chia hết cho 11 => nếu ab+cd chia hết cho 11 thì abcd chia hết cho 11
C1 : Dấu hiệu chia hết cho 11 :
1 số chia hết cho 11 và chỉ khi tổng các số hàng chẵn / lẻ chia hết cho 11
Theo giả thiết /ab + /cd + /eg = 10a + b + 10c + d + 10e + g = 11. ( a + c + e ) + ( b +d + g ) - ( a + c + e ) chia hết cho 11
Suy ra : ( b + d + g ) - ( a + c + e ) chia hết cho 11
Suy ra abcdeg chia hết cho 11
C2 : Ta có
abcdeg = ab . 10000 = cd . 100 + eg
= ( 9999ab ) + ( 99cd )+ ( ab + cd + eg )
Vì 9999ab + 99cd chia hết cho 11 và ab + cd + eg chia hết cho 11
Suy ra : abcdeg chia hết cho 11
( cách nào cũng đúng nha )
ab - ba ⋮ 9
ab - ba=a * 10+b*1-b*10-a*1
=a*(10-1)-b*(10-1)=a*9-b*9=9*(a-b)⋮9(vì 9⋮9)
vậy ab-ba⋮9
abba ⋮ 11
abba=a*1000+b*100+b*10+a.1=a*(1000+1)+b*(100+10)
=a*1001+b*110=a*11*91+b*10*11=11(a*91+b*10)⋮11(vì 11⋮11)
Vậy abba⋮11
ab - ba ⋮ 9
ab - ba=a x 10+b x 1-b x 10-a x 1
=a x (10-1)-b x (10-1)=a x 9-b x 9=9x (a-b)⋮9(vì 9⋮9)vậy ab-ba⋮9abba ⋮11
abba=a x 1000+b x 100+b x 10+a.1= a x (1000+1)+b x (100+10)
=a x 1001+b x 110=a x 11 x 91+b x 10 x 11=11(a x 91+b x 10)⋮11(vì 11⋮11)Vậy abba⋮11
a)\(ab+cd+eg⋮11\Rightarrow ab+999999\cdot ab+cd\cdot9999\cdot cd+eg+9999\cdot eg⋮11\)
\(\Rightarrow abcdeg⋮11\left(đpcm\right)\)
b) 10 chia 9 dư 1 nên 1028 chia 9 dư 1 => 1028 + 8 chia hết cho 9
1028 có tận cùng là 28 chữ số 0, chia hết cho 8 => 1028 + 8 chia hết cho 8
mà (8; 9) = 1 => 1028 + 8 chia hết cho 72 (đpcm)
bạn nga nguyễn ơi, mik vẫn ko hiểu cách giải của bạn, hình như có gì đó sai sai hay sao ý
Mk trả lời rồi còn gì nữa
b)mn+nm=10m+n+10n+m
=11m+11n
11(m+n)\(⋮\)11
=>mn+nm \(⋮\)11
k mik nha