\(\overline{abcab}\)\(⋮\)91 ; 7 ; 13<...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 10 2018

Mk trả lời rồi còn gì nữa

b)mn+nm=10m+n+10n+m

               =11m+11n

               11(m+n)\(⋮\)11

=>mn+nm \(⋮\)11

k mik nha

Ta có : abcdeg = ab.10000 + cd.100 + eg 

                         = ab.9999 + cd.99 + (ab + cd + eg)

                         = 99(ab.101 + cd) + (ab + cd + eg)

Vì 99(ab.101 + cd) chia hết cho 11 và  (ab + cd + eg) chia hết cho 11

Vậy abcdeg chia hết cho 11

3 tháng 4 2018

a) Ta có : abcdeg = ab . 10000 + cd . 100 + eg 

                             = ab . 9999 + ab + cd . 99 + cd + eg

                             = ab . 11 . 909 + ab + cd . 11 . 9 + cd + eg

                              = (ab . 909 + cd . 9) . 11 + (ab + cd + eg)

  Vì (ab . 909 + cd .9) . 11 ⋮ 11 và (ab + cd + eg) ⋮ 11 nên abcdeg ⋮ 11

19 tháng 10 2017

đề a,b bạn viết sai

c,\(\overline{abcabc}\) :7

Theo bài ra, ta có:

\(\overline{abcabc}\) = 1000\(\overline{abc}\) + \(\overline{abc}\)

=1001\(\overline{abc}\)

=143.7.\(\overline{abc}\)

=> \(\overline{abcabc}\)

20 tháng 10 2017

​Đề a đúng

Đề b sai , mình sửa lại :

\(\overline{aaa}:37\)

Đề c của mình đúng còn bạn không nhìn kĩ đề c và bạn làm sai rồi

6 tháng 12 2017

bài 2 : 

a, abcdeg = ab.10000 + cd.100 + eg

             = ab.9999 + ab + cd.99 + cd + eg

             = (ab.9999 + cd.99) + (ab+cd+eg)

vì 9999 chia hết cho 11 => ab.9999 chia hết cho 11    (1)

    99 chia hết cho 11 => cd.99 chia hết cho 11          (2)

    theo đề bài (ab+cd+eg) chi hết cho 11                 (3)

(1)(2)(3) => abcdeg chia hết cho 11

phần b thì bạn chứng minh 10^28 + 8 chi hết cho 8 và 9 là được

18 tháng 6 2018

abcd=100.ab+cd =99ab+(ab+cd)

vì 99 chia hết cho 11=> 99ab chia hết cho 11 => nếu ab+cd chia hết cho 11 thì abcd chia hết cho 11

18 tháng 6 2018

cảm ơn bạn cool queen, add với mình nhé <3

23 tháng 7 2017

ai giúp mk mk tc cho 3 cái

24 tháng 9 2017

C: Dấu hiệu chia hết cho 11 : 

1 số chia hết cho 11 và chỉ khi tổng các số hàng chẵn / lẻ chia hết cho 11

Theo giả thiết /ab + /cd + /eg = 10a + b + 10c + d + 10e + g = 11. ( a + c + e ) + ( b +d + g ) - ( a + c + e ) chia hết cho 11

Suy ra : ( b + d + g ) - ( a + c + e ) chia hết cho 11 

Suy ra abcdeg chia hết cho 11 

C2 : Ta có

abcdeg = ab . 10000 = cd . 100 + eg

=  ( 9999ab )  +  ( 99cd )+ ( ab + cd + eg ) 

Vì 9999ab + 99cd chia hết cho 11 và ab + cd + eg chia hết cho 11

 Suy ra : abcdeg chia hết cho 11

( cách nào cũng đúng nha ) 

29 tháng 11 2018

ab - ba ⋮ 9

ab - ba=a * 10+b*1-b*10-a*1

=a*(10-1)-b*(10-1)=a*9-b*9=9*(a-b)⋮9(vì 9⋮9)

vậy ab-ba⋮9

abba ⋮ 11

abba=a*1000+b*100+b*10+a.1=a*(1000+1)+b*(100+10)

=a*1001+b*110=a*11*91+b*10*11=11(a*91+b*10)⋮11(vì 11⋮11)

Vậy abba⋮11

29 tháng 11 2018

ab - ba ⋮ 9

ab - ba=a x 10+b x 1-b x 10-a x 1

=a x (10-1)-b x (10-1)=a x 9-b x 9=9x (a-b)⋮9(vì 9⋮9)vậy ab-ba⋮9abba ⋮11

abba=a x 1000+b x 100+b x 10+a.1= a x (1000+1)+b x (100+10)

=a x 1001+b x 110=a x 11 x 91+b x 10 x 11=11(a x 91+b x 10)⋮11(vì 11⋮11)Vậy abba⋮11

18 tháng 3 2017

a)\(ab+cd+eg⋮11\Rightarrow ab+999999\cdot ab+cd\cdot9999\cdot cd+eg+9999\cdot eg⋮11\)

\(\Rightarrow abcdeg⋮11\left(đpcm\right)\)

b) 10 chia 9 dư 1 nên 1028 chia 9 dư 1 => 1028 + 8 chia hết cho 9 

1028 có tận cùng là 28 chữ số 0, chia hết cho 8 => 1028 + 8 chia hết cho 8 

mà (8; 9) = 1 => 1028 + 8 chia hết cho 72 (đpcm)

18 tháng 3 2017

bạn nga nguyễn ơi, mik vẫn ko hiểu cách giải của bạn, hình như có gì đó sai sai hay sao ý