K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 3 2024

Đặt A = 1/101 + 1/102 + 1/103 + ... + 1/199 + 1/200

Số số hạng của A:

200 - 101 + 1 = 100 (số hạng)

Ta có:

1/101 < 1/100

1/102 < 1/100

1/103 < 1/100

...

1/200 < 1/100

Cộng vế với vế, ta có:

1/101 + 1/102 + 1/103 + ... + 1/199 + 1/200 < 1/100 + 1/100 + 1/100 + ... + 1/100

⇒ A < 100/100 = 1

Vậy A < 1

27 tháng 3 2024

\(\dfrac{1}{101}\)+\(\)....+\(\dfrac{1}{200}\)<\(\dfrac{1}{101}\).(200-101+1)

                      =\(\dfrac{100}{101}\)<1

\(\dfrac{1}{101}\)

29 tháng 2 2016

1-1/2+1/3-1/4+...+1/199-1/200

=(1+1/3+...+1/199)-(1/2+1/4+...+1/200)

=(1+1/2+1/3+...+1/199+1/200)-2(1/2+1/4+...+1/200)

=(1+1/2+1/3+...+1/199+1/200)-(1+1/2+...+1/100)

=1/101+1/102+...+1/200 (đpcm)

20 tháng 3 2017

HA ~~! Vẫn còn bài này !

1/101>1/150 
1/102>1/150 
1/103>1/150 
.... 
1/150=1/150 
Tất cả có 50 dữ kiện 
Vậy 1/101+1/102+...+1/150>50/150=1/3 (1) 

Tiếp theo 
1/151>1/200 
1/152>1/200 
... 
1/200=1/200 
Tương tự trên, thì :
1/151+......+1/200>50/200=1/4 (2) 

Cộng (1) và (2), thì A>(1/3+1/4)=7/12 \(\left(ĐPCM\right)\).

2 tháng 12 2016

Xét vế phải\(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+.....+\frac{1}{199}-\frac{1}{200}\)

=\(\left(1+\frac{1}{3}+\frac{1}{5}+..+\frac{1}{199}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{200}\right)\)

=\(\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+...+\frac{1}{199}+\frac{1}{200}\right)-2.\left(\frac{1}{2}-\frac{1}{4}-...-\frac{1}{200}\right)\)

=\(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+...+\frac{1}{199}+\frac{1}{200}-1-\frac{1}{2}-...-\frac{1}{100}\)

=\(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}\)

6 tháng 3 2016

cái này dễ lắm chỉ là chưa để ý thôi:

a,1/101>1/102>...>1/199>1/200

=>1/101+1/102+...+1/199+1/200<100*1/101=100/101<1

các phần khác làm tương tự

đánh mỏi tay quá duyệt luôn đi

16 tháng 3 2019

cái này ở trong học tốt toán 6 đúng không

19 tháng 7 2016

\(\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{199}+\frac{1}{200}< \frac{1}{100}+\frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}\)

                                                                                            100 phân số \(\frac{1}{100}\)

                                                                             \(< \frac{1}{100}.100\)

                                                                              \(< 1\left(đpcm\right)\)

\(\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+.....+\frac{1}{199}+\frac{1}{200}\)

\(< \frac{1}{100}+\frac{1}{100}+.....+\frac{1}{100}\)( 100 phân số )

\(< \frac{1}{100}.100=\frac{100}{100}=1\)

Vậy : \(\frac{1}{101}+\frac{1}{102}+.....+\frac{1}{200}< 1\)

26 tháng 2 2016

Làm ơn giải giúp mình nhanh nhanh nhé, mình đang cần gấp, ai giải được mình k cho

28 tháng 2 2016

chứng minh cái gì bạn