Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
nếu n chẵn => n(n+5) chẵn
nếu n lẻ => n+5 chẵn => n(n+5) chẵn
vậy với mọi n là số tự nhiên thì n(n+5) chia hết cho 2 hay 2 là ước của n(n+5)
Ta có:
Với \(n\inℤ\) ta có:
Vì n ; n + 5 là 2 số nguyên nên ta xét 2 TH sau:
Nếu: n chẵn => n(n+5) chẵn => 2 là ước của n(n+5)
Nếu: n lẻ => n+5 chẵn => n(n+5) chẵn => 2 là ước của n(n+5)
Từ 2 điều trên với mọi x nguyên thì đpcm
Đặt UCLN ( 2n + 3 ; 3n + 4 ) = d
=> 2n + 3 chia hết cho d; 3n +4 chia hết cho d
=> 3 ( 2n + 3 ) chia hết cho d; 2 ( 3n + 4 ) chia hết cho d
=> 6n + 9 chia hết cho d; 6n + 8 chia hết cho d
=> 6n + 9 - 6n - 8 chia hết cho d
=> 1 chia hết cho d
=> d = 1
Vậy UCLN ( 2n + 3 ; 3n + 4 ) = 1
Chứng tỏ 12n+1 là số nguyên tố.
ds n=(1;2;3;4;5;6;7;8;9) tick cho minh nha
Gọi d là UCLN (12n+1;30n+2)
=>12n+1 chia hết cho d và 30n+2 chia hết cho d
=>5.(12n+1) chia hết cho d và 2.(30n+2) chia hết cho d
=>60n+5 chia hết cho d và 60n+4 chia hết cho d
=>(60n+5)-(60n+4)=60n+5-60n-4=1 chia hết cho d
=>d=1
Vậy phân số trên tối giản
Nếu n là một số chẵn thì => n+3 là một số lẻ
Mà chẵn x lẻ = chẵn => đpcm
Nếu n là số lẻ thì => n+3 là một số chẵn
Mà lẻ x chẵn = chẵn => đpcm
Vậy tích n.(n+3) luôn là số chẵn với mọi số tự nhiên với n
giả sử n lẻ=> n+3 lẻ=> n(n+3) chẵn, Vn thuộc N
giả sử n chẵn=> n(n+3) chẵn(bởi vì chẵn nhân vs số nào cx chẵn
vậy...
(+) với n là số lẻ
=> n + 1 là số chẵn => ( n + 1) luôn chia hết cho 2 => ( n + 1)(3n+ 2) luôm chia hết cho 2 (1)
(+) với n là số chẵn
=> 3.n là số cahwnx =>3.n+2 là số chẵn => (3.n+2)(n + 1) là số chẵn=\>(3n+2)(n+ 1 ) chia hết cho 2 (2)
Từ(1) và (2) => A luôn luôn chia hết cho 2
Câu 1:
Ta thấy:
n;(n+1);(n+2);(n+3);(n+4) là 5 số tự nhiên liên tiếp.
suy ra :sẽ có 1 số chia hết cho 5
suy ra : n(n+1)(n+2)(n+3)(n+4) chia hết cho 5 với n ∈ N
Câu 2 :
+ Gọi các ước của số tự nhiên n lần lượt là : d1;d2;d3;...;d54(với d1;d2;d3;...;d54 ∈ N* và d1 ≠ d2 ≠ d3 ≠... ≠d54.)
Ta có :
n =d1.d54 =d2.d53 =d3.d52 =... =d27.d28
⇒(d1.d54).(d2.d53).(d3.d52). ... .(d27.d28)
= n.n.n.n. ... . n(27 số n)
⇒ d1.d2.d3.d4. ... .d53 =n27
⇒ Tích các ước của n = n27
2 là ước của n(n + 5) thì n(n + 5) chia hết cho 2
Bg
Vì n thuộc N nên n có thể là số chẵn hoặc n là số lẻ
(n lưỡng tính --> n gay :)))
Với n là số chẵn:
=> n \(⋮\)2
=> n(n + 5) \(⋮\)2
=> 2 là ước của n(n + 5)
=> ĐPCM
Với n là số lẻ
=> n + 5 là số chẵn
=> n + 5 \(⋮\)2
=> n(n + 5) \(⋮\)2
=> 2 là ước của n(n + 5)
=> ĐPCM
Vậy với mọi n thuộc N thì 2 là ước của n(n + 5)
thanks you bạn nhé