Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi d là UCLN(3a+4;2a+3)
=>3a+4 chia hết cho d;2a+3 chia hết cho d
=>2(3a+4) chia hết cho d;3(2a+3)chia hết cho d
Hay 6a+8 chia hết cho d;6a+9 chia hết cho d
=>(6a+9)-(6a+8)chia hết cho d
=>6a+9-6a-8 chia hết cho d
=>1 chia hết cho d
=>d=1 hoặc -1
=>3a+4 và 2a+3 là hai số nguyên tố cùng nhau
Vậy phân số có dạng \(\frac{3a+4}{2a+3}\)là phân số tối giản
Gọi d là ƯCLN(3a+4;2a+3)
Ta có: 3a+4 - 2a+3 chia hết cho d
Suy ra: 2.(3a+4)- 3.(2a+3) cũng chia hết cho d
6a + 8 - 6a+ 9 chia hết cho d
Suy ra: -1 chia hết cho d, nên d = 1
Vậy phân số \(\frac{3a+4}{2a+3}\) là 1 phân số tối giản
Đặt UC(2a+3,a+2)=d
=> \(\hept{\begin{cases}2a+3⋮d\\a+2⋮d\end{cases}\Leftrightarrow}2\left(a+2\right)-2a-3⋮d\Leftrightarrow1⋮d\Leftrightarrow d=1\)
Vậy phân số là tối giản
P/S: PP chung của dạng này là: Đặt UC của Tử và mẫu là d, sau đó thêm bớt thích hợp để CM d=1
\(\frac{2a+3}{a+2}=\frac{2\left(a+2\right)-1}{a+2}=2-\frac{1}{a+2}\)
Vì \(\frac{1}{a+2}\)là phân số tối giản \(\Rightarrow\frac{2a+3}{a+2}\)là phân só tối giản
Gọi UCLN của 2a+3 và a+2 là d
=>\(\hept{\begin{cases}2a+3⋮d\\a+2⋮d\end{cases}\Leftrightarrow\hept{\begin{cases}2a+3⋮d\\2a+4⋮d\end{cases}}}\Leftrightarrow1⋮d\)
=> d=1
=> phân số đó tối giản
gọi d là UCLN(2a+3;a+2)
ta có :
2(a+2)-2a+3 chia hết cho d
=>2a+4-2a+3 chia hết cho d
=>1 chia hết cho d
=>d=1
=>\(\frac{2a+3}{a+2}\) là phân số tối giản
dễ khoi , 2a+3=(a+2)+(a+2)-1
mà 4+2 chia hết cho a+2
=> 1 chia hết cho a+2
=> UC của 2a+3 và a+2 là 1
vậu nó tối giản , ko hiểu thì nói vs tui
Muốn chứng minh một phân số là tối giản bạn chưng minh UCLN của tử và mẫu là 1. Trước hết bạn hãy gọi UCLN của tử và mẫu là d, Như vậy bạn có 12n+1 và 30n+1 chia hết cho d=> 60n+5 và 60n+4 chia hết cho d=>1 chia hết cho d. Vậy p/s trên là tối giản, mk chỉ gợi ý cho bạn thôi, bạn tự làm sẽ nhớ dai hơn(nghĩ chắc bạn chuyên toán).
Chúc bạn học tốt
a. \(\frac{2-2a}{6-8b}=\frac{3-3a}{9-12b}\)
\(\Leftrightarrow\left(6-8b\right)\left(3-3a\right)=\left(2-2a\right)\left(9-12b\right)\)
\(\Leftrightarrow18-18a-24b+24ab=18-24b-18a+24ab\) ( đúng )
=> Đpcm
b. Gọi d là ƯCLN của n + 3 và 2n + 5
n + 3 chia hết cho d
2n + 5 chia hết cho d
\(\Rightarrow\left(n+3\right)-\left(2n+5\right)⋮d\)
\(\Rightarrow2\left(n+3\right)-2n-5⋮d\)
\(\Rightarrow2n+6-2n-5⋮d\)
\(\Rightarrow1⋮d\)=> d = 1
=> Đpcm
a) Giả sử \(\frac{2-2a}{6-8b}=\frac{3-3a}{9-12b}\)là đúng
Ta cần chứng minh \(\frac{2-2a}{6-8b}-\frac{3-3a}{9-12b}=0\)
\(\Rightarrow\frac{2\left(1-a\right)}{2\left(3-4b\right)}-\frac{3\left(1-a\right)}{3\left(3-4b\right)}=0\)
\(\Rightarrow\frac{1-a}{3-4b}-\frac{1-a}{3-4b}=0\)( đúng )
Vậy ta có đpcm
b) Gọi d là ƯCLN( n + 3 ; 2n + 5 )
\(\Rightarrow\hept{\begin{cases}n+3⋮d\\2n+5⋮d\end{cases}}\Rightarrow\hept{\begin{cases}2\left(n+3\right)⋮d\\2n+5⋮d\end{cases}}\Rightarrow\hept{\begin{cases}2n+6⋮d\\2n+5⋮d\end{cases}}\)
\(\Rightarrow\left(2n+6\right)-\left(2n+5\right)⋮d\)
\(\Rightarrow2n+6-2n-5⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
\(\RightarrowƯCLN\left(n+3;2n+5\right)=1\)
\(\Rightarrow\frac{n+3}{2n+5}\)là phân số tối giản ( đpcm )
gọi d là UCLN(3a+4;2a+3)
ta có:
[3(2a+3)]-[2(3a+4)] chia hết cho d
=>6(a+9)-6(a+8) chia hết cho d
=>1 chia hết cho d
=>d=1
=> phân số trên tối giản (đpcm)
Gọi d là UC của (3a+4;2a+3)
Khi đó ta có:
3a + 4 chia hết cho d và 2a + 3 chia hết cho d
<=> 6a + 8 chia hết cho d và 6a + 9 chia hết cho d
=>6a+9 - 6a+8 chia hết cho d
=>1 chia hết cho d
=>d=1
Vậy mọi phân số có dạng \(\frac{3a+4}{2a+3}\) đều là phân số trên tối giản (đpcm)