K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 12 2021

\(A=2\left(1+2\right)+...+2^7\left(1+2\right)=3\left(2+...+2^7\right)⋮3\)

29 tháng 12 2021

giải chi tiết cho mình nha

 

28 tháng 12 2017

Câu 1/     \(A=1+7+7^2+7^3+7^4+7^5\)       Nhân hai vế với 7 được :

\(7A=7+7^2+7^3+7^4+7^5+7^6\)   Do đó : \(6A=7^6-1\)  (Đã lấy đẳng thức dưới trừ đẳng thức trên vế theo vế tương ứng)

Suy ra :  \(A=\frac{\left(7^3\right)^2-1}{6}=\frac{\left(7^3-1\right)\left(7^3+1\right)}{6}=\)\(\frac{\left(7-1\right)\left(7^2+7.1+1^2\right)\left(7+1\right)\left(7^2-7.1+1^2\right)}{6}\)

(Đã khai triển các hằng đẳng thức đáng nhớ ) Như vậy : \(A=\left(7^2+8\right).8.\left(7^2+6\right)\) Là số chia hết cho 8

Câu 2/  Chứng tỏ :  (2n + 5) chia hết cho (n + 1)  .Câu này đề sai .Khi n = 1 đã sai rồi . 

Câu 3 : Giải tương tự câu 1

14 tháng 12 2018

Sai đề rồi bạn nhé

14 tháng 12 2018

Đó là đề ôn của mình mà

15 tháng 12 2016

A = 2 + 2+ 23 + 24 + ..... + 29 + 210

A = (2 + 22) + (23 + 24) + ..... + (29 + 210)

A = (2.1 + 2.2) + (23.1 + 23.2) + ..... + (29.1 + 29.2)

A = 2.(2 + 1) + 23.(2 + 1) + ...... + 29.(2 + 1)

A = 2.3 + 23.3 + ..... + 29.3 

A = 3.(2 + 23 + .... + 29

13 tháng 12 2018

Ta co : 1+2+2^2+2^3+2^4+2^5+2^6+2^7+2^8

= 7+56+448

ma 7 chia het cho 7

56 chia het cho 7

448 chia het cho 7

=> A chia het cho 7

13 tháng 12 2018

Mon nhớ câu này có rất nhiều người làm rồi

\(A=1+2+2^2+2^3+2^4+2^5+2^6+2^7+2^8\)

\(=\left(1+2+2^2\right)+\left(2^3+2^4+2^5\right)+\left(2^6+2^7+2^8\right)\)

\(=1.\left(1+2+2^2\right)+2^3.\left(1+2+2^2\right)+2^6.\left(1+2+2^2\right)\)

\(=\left(1+2+2^2\right).\left(1+2^3+2^6\right)\)

\(=7.\left(1+2^3+2^6\right)⋮7\)

Vậy \(A⋮7\)

20 tháng 12 2016

A=2+22+23+24+...+29

=(2+22+23)+(24+25+26)+(27+28+29)

=2.7+24.7+27.7 (vì 2+22+23=14=2.7 các phép tính sau cũng như zậy)

=7.(2+24+27)

=>A chia hết cho 7

k cho mình nhé

20 tháng 12 2016

Ta có A = 2  ( 1+2+4) + 24(1+2+4) + 27(1+2+4)

            =2*7 + 24*7 + 27*7

            = 7 (2+24+27) chia hết cho 7

Vậy A chia hết cho 7

10 tháng 3 2018

đề thiếu bạn nhé

10 tháng 3 2018

Chứng tỏ tổng A  \(⋮2\)

        \(2⋮2,2^2⋮2,2^3⋮2,2^4⋮2,...2^{11}⋮2,2^{12}⋮2\)

\(\Rightarrow A=2+2^2+2^3+...+2^{12}⋮2\left(đpcm\right)\)

24 tháng 8 2017

a) (x-14):2=24-3

(x-14):2 = 13

x-14 = 13.2

x-14 = 26

x = 26 + 14

x = 40

b) x572 = x <=> x = 1 hoặc 0 

24 tháng 8 2017

a, b làm như trên nha, còn mấy bìa còn lại :

 M=1+2+22+...+211 

M = \(\left(1+2+2^2+2^3+2^4+2^5\right)+\left(2^6+2^7+2^8+2^9+2^{10}+2^{11}\right)\)

M = (1+2+4+8+16+32) + 26( 1 + 2 + 22+23+24+25)

M = 63 + 26.63

M = 63 ( 1+ 26)

M= 9.7 (1 + 2^6) chia hết cho 9 => M chia hết cho 9

S=3 + 32 +33 +.....+ 39

S = \(\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+\left(3^7+3^8+3^9\right)\)

S = \(3\left(1+3+3^2\right)+3^4\left(1+3+3^2\right)+3^7\left(1+3+3^2\right)\)

S= 3. 13 + 3^4.13 + 3^7.13

S= 13 ( 3 +3^4+3^4) chia hết cho 13 => S chia hết cho 13

M= 2+ 2+ 23+....+210 

M= \(\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^9+2^{10}\right)\)

M = \(2\left(1+2\right)+2^3\left(1+2\right)+...+2^9\left(1+2\right)\)

\(M=2.3+2^3.3+...+2^9.3\)
M = 3( 2+ 2^3 +...+ 2^9) chia heets cho 3

=> M chia hết cho 3

A=  7+ 72 + 73 +.....+78 

A= \(\left(7+7^2+7^3+7^4\right)+\left(7^5+7^6+7^7+7^8\right)\)

A= \(7\left(1+7+7^2+7^3\right)+7^5\left(1+7+7^2+7^3\right)\)

A= 7. 400 + 7^5 . 400

A = 400( 7+7^5)

A = 5 . 80 ( 7+7^5) chia hết cho 5 => A chia hết cho 5

8 tháng 12 2016

Ta có A= ( 2+ 2 2 +23) +.....+ (28+29+210 )

          A=2.(1+2+22)+...+28..(1+2+22)

      A =2.7+......+28.7

A=(2+...+28). 7 : 7

=. A chia hết cho 7

21 tháng 12 2015

Ta thấy: 2 + 22 + 23 = 14 chia hết cho 7

Có 9 số hạng chia làm 3 nhóm. Mỗi nhóm chia hết cho 7.

A = 2 + 22 + 23 + ... + 29

A = ( 2 + 2+ 23 ) + 23.( 2 + 22 + 23 ) + 26.( 2 + 22 + 2

A = 14 + 23.14 + 26.14

A = 14.( 23 + 26 )

Mà 14 chia hết cho 7 \(\Rightarrow\) 14.( 23 + 2) chia hết cho 7 \(\Rightarrow\) A chia hết cho 7