\(\in N\)thì 13+23+33+..+n3
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 1 2017

Đầu tiên, Tính S1=1+2+3+...+n=\(\frac{n\left(n+1\right)}{2}\)

*/ Tính S2=12+22+32+...+n2

Đặt: S2'=1.2+2.3+3.4+...+n(n+1)

=>3S2'=1.2.3+2.3.3+3.4.3+...+n(n+1).3=1.2.3+2.3.(4-1)+3.4.(5-2)+...+n(n+1)[(n+2)−(n−1)]

Nhân ra và rút gọn ta được: 3S2′=n(n+1)(n+2) => S2'=\(\frac{n\left(n+1\right)\left(n+2\right)}{3}\)

Ta lại có: S2′=1.2+2.3+3.4+...+n(n+1)=(12+22+32+...+n2)+(1+2+3+...+n)=S2+S1=S2+\(\frac{n\left(n+1\right)}{2}\)

=> S2=S2'-\(\frac{n\left(n+1\right)}{2}\)=\(\frac{n\left(n+1\right)\left(n+2\right)}{3}\) -\(\frac{n\left(n+1\right)}{2}\)=\(\frac{n\left(n+1\right)\left(2n+1\right)}{6}\)

S3=

4 tháng 12 2015

+ n =1  đúng

+ g/s đúng với n =k

 => 13 +23 +.....+k3 =(k(k+1)/2)2

+với n = k+1

=> 13 +23 +.....+ k3 +(k+1)3 = ( 1+2+....+k)2 + (k+1)3 =\(\frac{\left(k+1\right)^2k^2}{4}+\left(k+1\right)^3=\frac{1}{4}\left(k+1\right)^2\left(k^2+4k+4\right)=\frac{1}{4}\left(k+1\right)^2\left(k+2\right)^2=\left(\frac{\left(k+1\right)\left(k+2\right)}{2}\right)^2\)

Vậy đúng với n =k+1

=> dpcm

4 tháng 12 2015

Đăng nhiều thế

+ với n =1

=> 13 = [1.(1+1)/2)2 =1  ( đúng)

+ Giả sử  (*) đúng với n =k

=> ta có  13 +23 +....+ k3 = (k(k+1)/2)2

+

13 tháng 7 2016

a) \(9\cdot3^3\cdot\frac{1}{81}\cdot3^2=3^2\cdot3^3\cdot\left(\frac{1}{3}\right)^43^2=3^7\cdot\frac{1}{3^4}=3^3\)

b) \(4\cdot2^5:\left(2^3\cdot\frac{1}{16}\right)=2^2\cdot2^5:\left(2^3\cdot\frac{1}{2^4}\right)=2^7:\frac{1}{2}=2^8\)

c) \(3^2\cdot2^5\cdot\left(\frac{2}{3}\right)^2=3^2\cdot2^5\cdot\frac{2^2}{3^2}=2^7\)

d) \(\left(\frac{1}{3}\right)^2\cdot\frac{1}{3}\cdot9^2=\frac{1}{3^2}\cdot\frac{1}{3}\cdot3^4=\frac{1}{3^3}\cdot3^4=3\)

13 tháng 7 2016

a)9.33.\(\frac{1}{81}\).32

   =32.33.34.\(\frac{1}{3^4}\).32

    =311.\(\frac{1}{3^4}\)

    =37

b)4.25:(\(2^3.\frac{1}{16}\))

  =22.25:(\(2^3.\frac{1}{2^4}\))

  =27:\(\frac{2^3}{2^4}\)

  =27.\(\frac{2^4}{2^3}\)

   =\(\frac{2^{11}}{2^3}\)

   =28

c)32.25.\(\left(\frac{2}{3}\right)^2\)

   =32.25.\(\frac{2^2}{3^2}\)

   =\(\frac{3^2.2^5.2^2}{3^2}\)

   =27

d)\(\left(\frac{1}{3}\right)^2.\frac{1}{3}.9^2\)

    =\(\frac{1^2}{3^2}.\frac{1}{3}.\left(3^2\right)^2\)

    =\(\frac{1^2}{3^2}.\frac{1}{3}.3^4\)

    =\(\frac{1^2}{3^2}.\frac{3^4}{3}\)

    =\(\frac{1^2}{3^2}.3^3\)

   =3

21 tháng 10 2019

a) Câu này thiếu đề nhé bạn.

b) \(\frac{25}{5^n}=5\)

\(\Rightarrow5^n=25:5\)

\(\Rightarrow5^n=5\)

\(\Rightarrow5^n=5^1\)

\(\Rightarrow n=1\)

Vậy \(n=1.\)

c) \(\frac{81}{\left(-3\right)^n}=-243\)

\(\Rightarrow\left(-3\right)^n=81:\left(-243\right)\)

\(\Rightarrow\left(-3\right)^n=-\frac{1}{3}\)

\(\Rightarrow\left(-3\right)^n=\left(-3\right)^{-1}\)

\(\Rightarrow n=-1\)

Vậy \(n=-1.\)

e) \(\left(\frac{1}{3}\right)^n=\frac{1}{81}\)

\(\Rightarrow\left(\frac{1}{3}\right)^n=\left(\frac{1}{3}\right)^4\)

\(\Rightarrow n=4\)

Vậy \(n=4.\)

f) \(\left(-\frac{3}{4}\right)^n=\frac{81}{256}\)

\(\Rightarrow\left(-\frac{3}{4}\right)^n=\left(-\frac{3}{4}\right)^4\)

\(\Rightarrow n=4\)

Vậy \(n=4.\)

Chúc bạn học tốt!

22 tháng 10 2019

d) \(\frac{1}{2}.2^n+4.2^n=9.2^5\)

\(\Rightarrow2^n.\left(\frac{1}{2}+4\right)=288\)

\(\Rightarrow2^n.\frac{9}{2}=288\)

\(\Rightarrow2^n=288:\frac{9}{2}\)

\(\Rightarrow2^n=64\)

\(\Rightarrow2^n=2^6\)

\(\Rightarrow n=6\)

Vậy \(n=6.\)

g) \(-\frac{512}{343}=\left(-\frac{8}{7}\right)^n\)

\(\Rightarrow\left(-\frac{8}{7}\right)^n=\left(-\frac{8}{7}\right)^3\)

\(\Rightarrow n=3\)

Vậy \(n=3.\)

h) \(5^{-1}.25^n=125\)

\(\Rightarrow5^{-1}.5^{2n}=5^3\)

\(\Rightarrow5^{-1+2n}=5^3\)

\(\Rightarrow-1+2n=3\)

\(\Rightarrow2n=3+1\)

\(\Rightarrow2n=4\)

\(\Rightarrow n=4:2\)

\(\Rightarrow n=2\)

Vậy \(n=2.\)

k) \(3^{-1}.3^n+6.3^{n-1}=7.3^6\)

\(\Rightarrow3^{n-1}+6.3^{n-1}=7.3^6\)

\(\Rightarrow3^{n-1}.\left(1+6\right)=7.3^6\)

\(\Rightarrow3^{n-1}.7=7.3^6\)

\(\Rightarrow n-1=6\)

\(\Rightarrow n=6+1\)

\(\Rightarrow n=7\)

Vậy \(n=7.\)

Chúc bạn học tốt!

Cách so sánh 2 lũy thừa am và bn (\(a,b,m,n\in N;ƯCLN\left(m,n\right)>1\)) :Ta có :\(a^m=\left(a^{\frac{m}{ƯCLN\left(m,n\right)}}\right)^{ƯCLN\left(m,n\right)};b^n=\left(b^{\frac{n}{ƯCLN\left(m,n\right)}}\right)^{ƯCLN\left(m,n\right)}\)Vì\(a^{\frac{m}{ƯCLN\left(m,n\right)}}\)(< ; > ; =)\(b^{\frac{n}{ƯCLN\left(m,n\right)}}\)nên am (< ; > ; =) bnVí dụ : So sánh 2300 và 3200Ta có :\(2^{300}=\left(2^3\right)^{100}=8^{100};3^{200}=\left(3^2\right)^{100}=9^{100}\).Vì...
Đọc tiếp

Cách so sánh 2 lũy thừa am và bn (\(a,b,m,n\in N;ƯCLN\left(m,n\right)>1\)) :

Ta có :\(a^m=\left(a^{\frac{m}{ƯCLN\left(m,n\right)}}\right)^{ƯCLN\left(m,n\right)};b^n=\left(b^{\frac{n}{ƯCLN\left(m,n\right)}}\right)^{ƯCLN\left(m,n\right)}\)

\(a^{\frac{m}{ƯCLN\left(m,n\right)}}\)(< ; > ; =)\(b^{\frac{n}{ƯCLN\left(m,n\right)}}\)nên am (< ; > ; =) bn

Ví dụ : So sánh 2300 và 3200

Ta có :\(2^{300}=\left(2^3\right)^{100}=8^{100};3^{200}=\left(3^2\right)^{100}=9^{100}\).Vì 8100 < 9100 nên 2300 < 3200 

Chú ý : - Cách trên chỉ đúng với a,b tự nhiên vì trong 2 lũy thừa cùng cơ số,lũy thừa có số mũ lớn hơn chưa chắc lớn hơn và ngược lại

Ví dụ : (-3)2 > (-3)3 nhưng 2 < 3 ;\(\left(\frac{1}{3}\right)^2>\left(\frac{1}{3}\right)^3\)nhưng 2 < 3

- Lũy thừa với số mũ nguyên âm hiếm dùng tới nên ko đề cập ở đây.

0

a: \(=3^2\cdot3^3\cdot3^{-4}\cdot3^2=3^{2+3-4+2}=3^3\)

b: \(=2^2\cdot2^5:\left(2^3\cdot\dfrac{1}{2^4}\right)=2^7:\dfrac{1}{2}=2^8\)

c: \(=9\cdot32\cdot\dfrac{4}{9}=128=2^7\)

d: \(=\dfrac{1}{27}\cdot3^4=3^1\)

20 tháng 6 2016

Câu 1

4 p/s   cộng thêm 1,p/s cuối trừ 4 rồi nhóm vs nhau

d/s la x= - 329

Câu   2

NHân vs 7 thành 7S rồi rút gọn là đc

 

20 tháng 6 2016

Câu 1 :

a) \(\Leftrightarrow\left(\frac{x+2}{327}+1\right)+\left(\frac{x+3}{326}+1\right)+\left(\frac{x+4}{325}+1\right)+\left(\frac{x+5}{324}+1\right)+\left(\frac{x+349}{5}-4\right)=0\)

\(\Leftrightarrow\frac{x+329}{327}+\frac{x+329}{326}+\frac{x+329}{325}+\frac{x+329}{324}+\frac{x+329}{5}=0\)

\(\Rightarrow\left(x+329\right).\left(\frac{1}{327}+\frac{1}{326}+\frac{1}{325}+\frac{1}{324}+\frac{1}{5}\right)=0\)

Dễ thấy \(\frac{1}{327}+\frac{1}{326}+\frac{1}{325}+\frac{1}{324}\ne0\) \(\Rightarrow x+329=0\Rightarrow x=-329\)

4 tháng 11 2017

a)\(\left(\dfrac{1}{2}\right)^n=\dfrac{1}{32}\)

=>\(\left(\dfrac{1}{2}\right)^n=\left(\dfrac{1}{2}\right)^5\)

=>n=5

b)\(\left(\dfrac{343}{125}\right)=\left(\dfrac{7}{5}\right)^n\)

=>\(\left(\dfrac{7}{5}\right)^3=\left(\dfrac{7}{5}\right)^n\)

=>n=3

c)\(\dfrac{16}{2^n}=2\)

=>2n=\(\dfrac{16}{2}\)

=>2n=8

=>2n=23

=>n=3

d)\(\dfrac{\left(-3\right)^n}{81}=-27\)

=>(-3)n=-27.81

=>(-3)n=-2187

=>(-3)n=(-3)7

=>n=7

e)8n:2n=4

=>(23)n:2n=4

=>23n:2n=4

=>23n-n=4

=>22n=4

=>22n=22

=>2n=2

=>n=1

f)32.3n=35

=>3n=35:32

=>3n=35-2

=>3n=33

=>n=3

g) (22:4).2n=4

=>1.2n=22

=>n=2

h)3-2.34.3n=37

=>\(\left(\dfrac{1}{3}\right)^2\).34.3n=37

=>32.3n=37

=>32+n=37

=>2+n=7

=>n=5