Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử E là số tự nhiên
Biến đổi E ta có :
\(E=\frac{3n^2}{2n^2+n-1}+\frac{1}{n+1}=\frac{3n^2}{\left(n+1\right)\left(2n-1\right)}+\frac{2n-1}{\left(n+1\right)\left(2n-1\right)}=\frac{3n^2+2n-1}{\left(n+1\right)\left(2n-1\right)}\)
\(=\frac{\left(n+1\right)\left(3n-1\right)}{\left(n+1\right)\left(2n-1\right)}=\frac{3n-1}{2n-1}\)
Do E là số tự nhiên \(\Rightarrow\left(3n-1\right)⋮\left(2n-1\right)\)
\(\Leftrightarrow2\left(3n-1\right)⋮\left(2n-1\right)\Rightarrow\left[2\left(3n-1\right)-3\left(2n-1\right)\right]⋮2n-1\)
\(\Leftrightarrow\left(6n-2-6n+3\right)⋮\left(2n-1\right)\Leftrightarrow1⋮\left(2n-1\right)\)
\(\Rightarrow2n-1\inƯ\left(1\right)=\left\{\pm1\right\}\)
Xét \(2n-1=1\Rightarrow n=1\left(KTM:n>1;\text{loại}\right)\)
Xét \(2n-1=-1\Rightarrow n=0\left(KTM:n>1;\text{loại}\right)\)
Vậy ko có số tự nhiên n > 1 nào để \(\left(3n-1\right)⋮\left(2n-1\right)\) hay 3n - 1 ko chia hết cho 2n - 1
=> điều giả sử là sai hay E ko thể là số tự nhiên (đpcm)
Do p là số nguyên tố > 3 nên có thể có 2 dạng là 3k+1 và 3k+2
TH1: p = 3k+1
\(a=3\left(3k+1\right)+2+2020\cdot\left(3k+1\right)^2\)
\(\equiv2+1\cdot\left(1\right)^2\equiv0\)(Mod 3)
-> a chia hết cho 3
TH2: p = 3k+2
\(a=3\left(3k+2\right)+2+2020\cdot\left(3k+2\right)^2\)
\(\equiv2+1\cdot2^2\equiv0\)(Mod 3)
-> a chia hết cho 3
Vậy a là hợp số
bn oi nhầm rồi
\(a=3n+2+2020p^2\) chứ ko phải \(a=3p+2+2020p^2\)
Em mới hc lớp 7 thui cho nên ko bít làm đúng ko
Vì n^3 chia hết cho n^4 và 2n chia hết cho 3n mà dưới mẫu có cộng thêm 1
Cho nên ps trên tối giản
Cần chú ý: Số chính phương chia cho 3 luôn dư 0 hoặc 1
Ta có: \(2020p^2=505\left(2p\right)^2\)
Vì \(\left(2p\right)^2\) là số chính phương nên \(\left(2p\right)^2\) chia 3 dư 0 hoặc 1
Mà p là số nguyên tố khác 3 nên p không chia hết cho 3
=> 2p không chia hết cho 3
=> \(\left(2p\right)^2\) không chia hết cho 3
Do đó: \(\left(2p\right)^2\)chia 3 dư 1
Đặt \(\left(2p\right)^2=3k+1\left(k\in Z\right)\) \(\Rightarrow505.\left(2p\right)^2=505\left(3k+1\right)=1515k+505\)
\(\Rightarrow3n+2+2020p^2=3n+2+1515k+505=3n+1515k+507\)
Vì 3n, 1515k, 507 đều chia hết cho 3 nên 3n + 1515k + 507 chia hết cho 3
=> \(3n+2+2020p^2\)chia hết cho 3
=> Đpcm