\(x+2\sqrt{x}-1\ge0\) VỚI MỌI GIÁ TRỊ CỦA X

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 7 2019

\(R=\frac{2x}{x+3\sqrt{x}+2}+\frac{5\sqrt{x}}{x+4\sqrt{x}+3}+\frac{\sqrt{x}+10}{x+5\sqrt{x}+6}\)

\(=\frac{2x}{\left(\sqrt{x}+1\right)\left(\sqrt{x}+2\right)}+\frac{5\sqrt{x}}{\left(\sqrt{x}+1\right)\left(\sqrt{x}+3\right)}+\frac{\sqrt{x}+10}{\left(\sqrt{x}+2\right)\left(\sqrt{x}+3\right)}\)

=\(\frac{2x\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}+2\right)\left(\sqrt{x}+3\right)}+\frac{5\sqrt{x}\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}+3\right)\left(\sqrt{x}+2\right)}+\frac{\left(\sqrt{x}+10\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}+2\right)\left(\sqrt{x}+3\right)}\)

\(=\frac{2x\sqrt{x}+6x+5x+10\sqrt{x}+x+\sqrt{x}+10\sqrt{x}+10}{\left(\sqrt{x}+1\right)\left(\sqrt{x}+2\right)\left(\sqrt{x}+3\right)}\)

\(=\frac{2x\sqrt{x}+12x+21\sqrt{x}+10}{\left(\sqrt{x}+1\right)\left(\sqrt{x}+2\right)\left(\sqrt{x}+3\right)}\)

@@@@@@@@@@@ Đề sai hay mình sai??@@@@@@@@@@

21 tháng 4 2020

@Mai.T.Loan câu a pha cuối hơi tắt đó nhìn khó hiểu lắm

còn câu b kl sai r nha

21 tháng 4 2020
https://i.imgur.com/K1Kg6qE.jpg
6 tháng 12 2018

a,\(P=\left(\dfrac{x+2}{x\sqrt{x}-1}+\dfrac{\sqrt{x}}{x+\sqrt{x}+1}+\dfrac{1}{1-\sqrt{x}}\right):\dfrac{\sqrt{x}-1}{2}\)

\(P=\left[\dfrac{x+2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}+\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}-\dfrac{x+\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\right].\dfrac{2}{\sqrt{x}-1}\)

\(P=\dfrac{x+2+x-\sqrt{x}-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}.\dfrac{2}{\sqrt{x}-1}\)

\(P=\dfrac{x-2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}.\dfrac{2}{\sqrt{x}-1}\)

\(P=\dfrac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}.\dfrac{2}{\sqrt{x}-1}=\dfrac{2}{x+\sqrt{x}+1}\)

Vậy \(P=\dfrac{2}{x+\sqrt{x}+1}\)

b, Ta có \(x+\sqrt{x}+1=\left(x+2\sqrt{x}.\dfrac{1}{2}+\dfrac{1}{4}\right)+\dfrac{3}{4}=\left(\sqrt{x}+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}>0\forall x\)Suy ra \(\dfrac{2}{x+\sqrt{x}+1}>0\forall x>0,x\ne1\)

hay \(P>0\forall x>0,x\ne1\)(đpcm)

13 tháng 6 2019

a/ \(x-2\sqrt{x}+1+16=\left(\sqrt{x}-1\right)^2+16>0\forall x\ge0\)

b/ \(x-5\sqrt{x}+\frac{25}{4}-\frac{8097}{4}=\left(\sqrt{x}-\frac{5}{2}\right)^2-\frac{8097}{4}\ge-\frac{8097}{4}\)

"="\(\Leftrightarrow x=\frac{25}{4}\)

Y
13 tháng 6 2019

a) \(x-2\sqrt{x}+17\)

\(=x-2\sqrt{x}+1+16\)

\(=\left(\sqrt{x}-1\right)^2+16>0\forall x\ge0\)

b) \(x-5\sqrt{x}-2018\)

\(=x-2\sqrt{x}\cdot\frac{5}{2}+\frac{25}{4}-\frac{8097}{4}\)

\(=\left(\sqrt{x}-\frac{5}{2}\right)^2-\frac{8097}{4}\ge-\frac{8097}{4}\forall x\ge0\)

Dấu "=" \(\Leftrightarrow\sqrt{x}=\frac{5}{2}\Leftrightarrow x=\frac{25}{4}\)

30 tháng 6 2016

a/ \(Q=\left[\frac{x+2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}+\frac{\sqrt{x}}{x+\sqrt{x}+1}-\frac{1}{\sqrt{x}-1}\right].\frac{2}{\sqrt{x}-1}\)

       \(=\frac{x+2-x-\sqrt{x}-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}.\frac{2}{\left(\sqrt{x}-1\right)}\)

       \(=\frac{\left(x-2\sqrt{x}+1\right).2}{\left(\sqrt{x}-1\right)^2\left(x+\sqrt{x}+1\right)}=\frac{\left(\sqrt{x}-1\right)^2.2}{\left(\sqrt{x}-1\right)^2\left(x+\sqrt{x}+1\right)}\) 

       \(=\frac{2}{x+\sqrt{x}+1}\)

b/ Ta có: \(x+\sqrt{x}+1=x+2.\frac{1}{2}.\sqrt{x}+\left(\frac{1}{2}\right)^2-\left(\frac{1}{2}\right)^2+1=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\)

                      \(\Rightarrow Q=\frac{2}{x+\sqrt{x}+1}>0\)

                                                                                  Vậy Q > 0

1 tháng 4 2019

\(1,a+b\le\sqrt{2\left(a^2+b^2\right)}\)

\(\Leftrightarrow\left(a+b\right)^2\le2\left(a^2+b^2\right)\)

\(\Leftrightarrow a^2+2ab+b^2\le2a^2+2b^2\)

\(\Leftrightarrow\left(a-b\right)^2\ge0\left(LuonĐung\right)\)

dấu "=" khi  a = b

2,  ĐKXĐ: x > 1 ; y > 2

Áp dụng bđt Bunhiacopxki

\(S=\sqrt{x-1}+\sqrt{y-2}\le\sqrt{\left(1+1\right)\left(x-1+y-2\right)}\)

                                                       \(=\sqrt{2\left(4-3\right)}=\sqrt{2}\)

\("="\Leftrightarrow\hept{\begin{cases}x-1=y-2\\x+y=4\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{3}{2}\\y=\frac{5}{2}\end{cases}}\left(TmĐKXĐ\right)\)

13 tháng 9 2019

\(B=\frac{x-1-4\sqrt{x}+\sqrt{x}+1}{x-1}.\frac{x-1}{x-2\sqrt{x}}\)

\(=\frac{x-3\sqrt{x}}{x-2\sqrt{x}}\)

\(=\frac{\sqrt{x}-3}{\sqrt{x}-2}\)

a.Ta co:

\(\frac{\sqrt{x}-3}{\sqrt{x}-2}< 1\left(x\ge0,x\ne4\right)\) 

\(\Leftrightarrow\sqrt{x}-3< \sqrt{x}-2\)

\(\Leftrightarrow3>2\)

Vay \(B< 1\left(\forall x\ge0,x\ne4\right)\)

Lát mình giải 2 câu kia,di ăn com cái

13 tháng 9 2019

b.Ta co:

\(\frac{\sqrt{x}-3}{\sqrt{x}-2}< \frac{3}{2}\)

\(\Leftrightarrow2\sqrt{x}-6< 3\sqrt{x}-6\)

\(\Leftrightarrow x>0\)

Vay \(B< \frac{3}{2}\left(\forall x>0,x\ne4\right)\)

c.Ta co:

\(\frac{\sqrt{x}-3}{\sqrt{x}-2}>\sqrt{x}-1\)

\(\Leftrightarrow\sqrt{x}-3>x-3\sqrt{x}+2\)

\(\Leftrightarrow x-4\sqrt{x}+5< 0\)

\(\Leftrightarrow\left(\sqrt{x}-2\right)^2+1< 0\) (vo ly)

Vay khong co gia tri nao cua x thoa man \(B>\sqrt{x}-1\)