Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(\frac{1}{\left(\sqrt{3}+\sqrt{2}\right)^2}\) +\(\frac{1}{\left(\sqrt{3}-\sqrt{2}\right)^2}\) =\(\frac{\left(\sqrt{3}+\sqrt{2}\right)^2+\left(\sqrt{3}-\sqrt{2}\right)^2}{\left(\sqrt{3}+\sqrt{2}\right)^2\left(\sqrt{3}-\sqrt{2}\right)^2}\)
\(=\frac{10}{1}=10\)
mấy câu còn lại bạn tự làm nốt nhé mk ban rồi
a)
\(\frac{2}{\sqrt{6}-2}+\frac{2}{\sqrt{6}+2}+\frac{5}{\sqrt{6}}=\frac{2(\sqrt{6}+2+\sqrt{6}-2)}{(\sqrt{6}-2)(\sqrt{6}+2)}+\frac{5\sqrt{6}}{6}\)
\(=\frac{4\sqrt{6}}{6-2^2}+\frac{5\sqrt{6}}{6}=2\sqrt{6}+\frac{5\sqrt{6}}{6}=\frac{17\sqrt{6}}{6}\)
b)
\(\frac{1}{\sqrt{3}+\sqrt{2}-\sqrt{5}}-\frac{1}{\sqrt{3}+\sqrt{2}+\sqrt{5}}=\frac{\sqrt{3}+\sqrt{2}+\sqrt{5}-(\sqrt{3}+\sqrt{2}-\sqrt{5})}{(\sqrt{3}+\sqrt{2}-\sqrt{5})(\sqrt{3}+\sqrt{2}+\sqrt{5})}\)
\(=\frac{2\sqrt{5}}{(\sqrt{3}+\sqrt{2})^2-5}=\frac{2\sqrt{5}}{5+2\sqrt{6}-5}=\sqrt{\frac{5}{6}}\)
c)
\(\left(\frac{\sqrt{6}-\sqrt{2}}{1-\sqrt{3}}-\frac{5}{\sqrt{5}}\right):\frac{1}{\sqrt{5}-\sqrt{2}}\)
\(=\left[\frac{\sqrt{2}(\sqrt{3}-1)}{1-\sqrt{3}}-\sqrt{5}\right].(\sqrt{5}-\sqrt{2})\)
\(=(-\sqrt{2}-\sqrt{5})(\sqrt{5}-\sqrt{2})=-(\sqrt{5}+\sqrt{2})(\sqrt{5}-\sqrt{2})\)
\(=-(5-2)=-3\)
d)
\(\frac{1}{\sqrt{3}}+\frac{1}{3\sqrt{2}}+\frac{1}{\sqrt{3}}\sqrt{\frac{5}{12}-\frac{1}{\sqrt{6}}}\)
\(=\frac{1}{\sqrt{3}}+\frac{1}{3\sqrt{2}}+\frac{1}{\sqrt{3}}\sqrt{\frac{1}{4}+\frac{2}{2\sqrt{6}}+\frac{1}{6}}\)
\(=\frac{1}{\sqrt{3}}+\frac{1}{3\sqrt{2}}+\frac{1}{\sqrt{3}}\sqrt{(\frac{1}{2}-\frac{1}{\sqrt{6}})^2}\)
\(=\frac{1}{\sqrt{3}}+\frac{1}{3\sqrt{2}}+\frac{1}{\sqrt{3}}(\frac{1}{2}-\frac{1}{\sqrt{6}})\)
\(=\frac{1}{\sqrt{3}}+\frac{1}{3\sqrt{2}}+\frac{1}{2\sqrt{3}}-\frac{1}{3\sqrt{2}}=\frac{3}{2\sqrt{3}}=\frac{\sqrt{3}}{2}\)
Giúp bn bài 1 thôi
Bài 1:
a, \(\sqrt{7-2\sqrt{10}}=\sqrt{5-2\sqrt{10}+2}=\sqrt{\left(\sqrt{5}-\sqrt{2}\right)^2}\)
\(=\left|\sqrt{5}-\sqrt{2}\right|=\sqrt{5}-\sqrt{2}\) (\(\sqrt{5}>\sqrt{2}\)) (đpcm)
b, \(\sqrt{4+2\sqrt{3}}-\sqrt{3}=\sqrt{3+2\sqrt{3}+1}-\sqrt{3}\)
\(=\sqrt{\left(\sqrt{3}+1\right)^2}-\sqrt{3}=\sqrt{3}+1-\sqrt{3}=1\) (đpcm)
Chúc bn học tốt!