\(\frac{1}{4}+\frac{1}{9}+...+\frac{1}{n^2}< 1\left(n\in N,n\ge2\right)\)<...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 11 2018

\(\left(\frac{2^2-1}{2^2}\right)\left(\frac{3^2-1}{3^2}\right)\left(\frac{4^2-1}{4^2}\right)...\left(\frac{\left(n-1\right)^2-1}{\left(n-1\right)^2}\right)\left(\frac{n^2-1}{n^2}\right)\)

=\(\frac{\left(2-1\right)\left(2+1\right)}{2^2}.\frac{\left(3-1\right)\left(3+1\right)}{3^2}.\frac{\left(4-1\right)\left(4+1\right)}{4^2}...\frac{\left(n-2\right)n}{\left(n-1\right)^2}.\frac{\left(n-1\right)\left(n+1\right)}{n^2}\)

=\(\frac{1.3}{2^2}.\frac{2.4}{3^2}.\frac{3.5}{4^2}...\frac{\left(n-2\right).n}{\left(n-1\right)^2}.\frac{\left(n-1\right)\left(n+1\right)}{n^2}=\frac{1}{2}.\frac{n+1}{n}=\frac{1}{2}+\frac{1}{2n}>\frac{1}{2}\)

AH
Akai Haruma
Giáo viên
31 tháng 10 2019

Lời giải:

Liên hợp ta thấy:

\(2(\sqrt{n+1}-\sqrt{n})=2.\frac{(n+1)-n}{\sqrt{n+1}+\sqrt{n}}=\frac{2}{\sqrt{n+1}+\sqrt{n}}<\frac{2}{\sqrt{n}+\sqrt{n}}=\frac{1}{\sqrt{n}}(1)\)

\(2(\sqrt{n}-\sqrt{n-1})=2.\frac{n-(n-1)}{\sqrt{n}+\sqrt{n-1}}=\frac{2}{\sqrt{n}+\sqrt{n-1}}>\frac{2}{\sqrt{n}+\sqrt{n}}=\frac{1}{\sqrt{n}}(2)\)

Từ \((1);(2)\Rightarrow 2(\sqrt{n+1}-\sqrt{n})< \frac{1}{\sqrt{n}}< 2(\sqrt{n}-\sqrt{n-1})\)

------------------------

Áp dụng vào bài toán:

\(S=1+\frac{1}{\sqrt{2}}+...+\frac{1}{\sqrt{100}}>1+2(\sqrt{3}-\sqrt{2})+2(\sqrt{4}-\sqrt{3})+...+2(\sqrt{101}-\sqrt{100})\)

\(\Leftrightarrow S>1+2(\sqrt{101}-\sqrt{2})>18(*)\)

Và:

\(S< 1+2(\sqrt{2}-\sqrt{1})+2(\sqrt{3}-\sqrt{2})+....+2(\sqrt{100}-\sqrt{99})\)

\(\Leftrightarrow S< 1+2(\sqrt{100}-\sqrt{1})=19(**)\)

Từ $(*); (**)$ suy ra $18< S< 19$ (đpcm)

20 tháng 10 2018

Quy đồng hết lên

CHú yys : nên c/m từng cái một thì hơn

/

16 tháng 11 2018

mèo conavt2714691_60by60.jpg

8 tháng 10 2016

bn làm dạng tổng quát đi ra mà

8 tháng 10 2016

có thì tớ đã ko hỏi

AH
Akai Haruma
Giáo viên
31 tháng 10 2019

Bạn tham khảo lời giải tại link sau:

Câu hỏi của Hoa Trần Thị - Toán lớp 9 | Học trực tuyến