Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Với \(0\le x;y\le1\) ta có:
\(\frac{x}{\sqrt{y+3}}+\frac{y}{\sqrt{x+3}}\ge\frac{x}{\sqrt{1+3}}+\frac{y}{\sqrt{1+3}}=\frac{x+y}{2}\)
Dấu "=" xảy ra <=> x = y = 1
Có: \(0\le x;y\le1\)
=> \(0\le x^2\le x\le1;0\le y^2\le y\le1\)
\(\left(\frac{x}{\sqrt{y+3}}+\frac{y}{\sqrt{x+3}}\right)^2\le2\left(\frac{x^2}{y+3}+\frac{y^2}{x+3}\right)\le2\left(\frac{x}{x+y+2}+\frac{y}{x+y+2}\right)\)
\(=2\left(\frac{x+y+2}{x+y+2}-\frac{2}{x+y+2}\right)\le2\left(1-\frac{2}{1+1+2}\right)=1\)
=> \(\sqrt{\frac{x}{\sqrt{y+3}}+\frac{y}{\sqrt{x+3}}}\le1\)
Dấu "=" xảy ra x<=> = y =1
a) \(x-\sqrt{x}+1>0\)mà \(\sqrt{x}\)>0 => biểu thức > 0
b) \(\sqrt{x}\)\(\le x-\sqrt{x}+1\)<=> \(x-2\sqrt{x}+1\ge0\)(nhân lên do không âm)
<=> \(\left(\sqrt{x}-1\right)^2\ge0\)=> đpcm ^^
a,\(P=\left(\dfrac{x+2}{x\sqrt{x}-1}+\dfrac{\sqrt{x}}{x+\sqrt{x}+1}+\dfrac{1}{1-\sqrt{x}}\right):\dfrac{\sqrt{x}-1}{2}\)
\(P=\left[\dfrac{x+2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}+\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}-\dfrac{x+\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\right].\dfrac{2}{\sqrt{x}-1}\)
\(P=\dfrac{x+2+x-\sqrt{x}-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}.\dfrac{2}{\sqrt{x}-1}\)
\(P=\dfrac{x-2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}.\dfrac{2}{\sqrt{x}-1}\)
\(P=\dfrac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}.\dfrac{2}{\sqrt{x}-1}=\dfrac{2}{x+\sqrt{x}+1}\)
Vậy \(P=\dfrac{2}{x+\sqrt{x}+1}\)
b, Ta có \(x+\sqrt{x}+1=\left(x+2\sqrt{x}.\dfrac{1}{2}+\dfrac{1}{4}\right)+\dfrac{3}{4}=\left(\sqrt{x}+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}>0\forall x\)Suy ra \(\dfrac{2}{x+\sqrt{x}+1}>0\forall x>0,x\ne1\)
hay \(P>0\forall x>0,x\ne1\)(đpcm)
Mình cũng nghĩ là đề sai,... do cái này là tài liệu trên mạng.
C.hóa \(x+y=1\) và dùng C-S:
\(VT^2\le\frac{2x}{\left(y+1\right)^2}+\frac{2y}{\left(x+1\right)^2}\le\frac{8}{9}=VP^2\)
\(BDT\Leftrightarrow\frac{x}{\left(2-x\right)^2}+\frac{y}{\left(2-y\right)^2}\le\frac{4}{9}\left(1\right)\)
Ta có BĐT phụ \(\frac{x}{\left(2-x\right)^2}\le\frac{20}{27}x-\frac{4}{27}\)
\(\Leftrightarrow-\frac{\left(2x-1\right)^2\left(5x-16\right)}{27\left(x-2\right)^2}\le0\) *Đúng*
Tương tự cho 2 BĐT còn lại rồi cộng theo vế:
\(VT_{\left(1\right)}\le\frac{20}{27}\left(x+y\right)-\frac{4}{27}\cdot2=\frac{4}{9}=VP_{\left(1\right)}\)
"=" khi \(x=y=\frac{1}{2}\)
sai đề phải ko nhỉ,\(2\sqrt{x}+\sqrt{y}=1\) thì áp dụng Bunhiacopkxi,còn trừ thì mình chịu.
Áp dụng bất đẳng thức Bunhiacopxki ta có:
\(\left(2.\sqrt{x}+1.\sqrt{y}\right)^2\le\left(2^2+1^2\right)\left(x+y\right)\)
<=> \(5\left(x+y\right)\ge1\Leftrightarrow x+y\ge\dfrac{1}{5}\)
Dấu ''='' xảy ra <=> x=4/25 và y=1/25
a. \(B=\left(\dfrac{\sqrt{x}+1}{\sqrt{x}-1}-\dfrac{\sqrt{x}-1}{\sqrt{x}+1}-\dfrac{8\sqrt{x}}{x-1}\right):\left(\dfrac{\sqrt{x}-x-3}{x-1}-\dfrac{1}{\sqrt{x}-1}\right)\)
\(=\dfrac{-4\sqrt{x}}{x-1}.\dfrac{x-1}{-\left(x+4\right)}=\dfrac{4\sqrt{x}}{x+4}\)
b. \(\:B=\dfrac{4\sqrt{3+2\sqrt{2}}}{3+2\sqrt{2}+4}=\dfrac{4+4\sqrt{2}}{7+2\sqrt{2}}=\dfrac{\left(4+4\sqrt{2}\right).\left(7-2\sqrt{2}\right)}{\left(7+2\sqrt{2}\right).\left(7-2\sqrt{2}\right)}=\dfrac{12+20\sqrt{2}}{41}\)
\(\dfrac{\sqrt{x}}{x-\sqrt{x}+1}=\dfrac{\sqrt{x}}{\left(\sqrt{x}-\dfrac{1}{2}\right)^2+\dfrac{3}{4}}\ge0\)(1)
\(\dfrac{\sqrt{x}}{x-\sqrt{x}+1}-1=\dfrac{\sqrt{x}-x+\sqrt{x}-1}{x-\sqrt{x}+1}=\dfrac{-\left(x-2\sqrt{x}+1\right)}{x-\sqrt{x}+1}=-\dfrac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-\dfrac{1}{2}\right)^2+\dfrac{3}{4}}\le0\)
\(\Rightarrow\dfrac{\sqrt{x}}{x-\sqrt{x}+1}\le1\) (2)
(1);(2) => đpcm