K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
3 tháng 4 2019
Có 3 số => luôn chọn ra được 2 số cùng tính chẵn lẻ
=> hiệu của chúng chia hết cho 2
=> đpcm
12 tháng 5 2017
Gọi số tự nhiên đầu là a
Ta có 10 số đó sẽ là:
a;A+1;A+2;A+3;a+4;...;a+10
vì khi chia a cho 10 thì sẽ dư từ 0 đến 9, Nên
Nếu cộng a cho một đại lượng từ 0 đến 9 sẽ chia hết cho 10
7 tháng 12 2014
Các số nguyên tố lớn hơn 3 khi chia cho 12 thì dư 11; 7; 5 hoặc 1; mà 5 + 7 = 1 + 11 = 12 chia hết cho 12 nên nếu chia 4 số dư này thành 2 nhóm là (5; 7) và (1; 11) thì với ba số bất kì đang có khi chia cho 12 sẽ có số dư thuộc 1 trong 2 nhóm trên. (nguyên lí Dirichlet)
Ta thấy phép chia cho 5 có thể được các số dư là 0, 1, 2, 3, 4,
Xét các trường hợp:
· cả 4 số có số dư khác nhau (0,1,2,3);(0,2,3,4);(0,1 4,2); (0,4,2,3);(1,2,3,4)
bao giờ cũng có ít nhất 1 cặp số có số dư là (1+4) hoặc (2+3)
--> Tổng 1 cặp số đó chia hết cho 5
Với nhóm số có số dư (1,2,3,4) --> 2 cặp có tổng chia hết cho 5
· cả 4 số có số dư trùng nhau --> 6 cặp từng đôi một có hiệu = 0
--> chia hết cho 5
· 2 cặp có số dư trùng nhau --> Hiệu của 2 cặp đó = 0 --> chia hết cho 5
· 1 cặp có số dư trùng nhau --> Hiệu của 1 cặp đó = 0 --> chia hết cho 5
Vậy ít nhất cũng chọn ra 1 cặp số mà tổng hoặc hiệu của chúng chia hết cho 5.