K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 7 2015

bài 2:

câu 2:

\(\left(2x-1\right)^2+\left(x+3\right)^2-5\left(x-7\right)\left(x+7\right)=0\)

\(\Rightarrow\left(2x\right)^2-2\cdot2x\cdot1+1^2+x^2+2\cdot x\cdot3+3^2-5\left(x-7\right)\left(x+7\right)=0\)

\(\Rightarrow4x^2-4x+1+x^2+6x+9-5\left(x-7\right)\left(x+7\right)=0\)

\(\Rightarrow5x^2+2x+10-5\left(x^2+7x-7x-49\right)=0\)

\(\Rightarrow5x^2+2x+10-5\left(x^2-49\right)=0\)

\(\Rightarrow5x^2+2x+10-5x^2+245=0\)

\(\Rightarrow2x-255=0\)

\(\Rightarrow2x=255\Rightarrow x=255:2=\frac{255}{2}=127,5\)

ko chắc lắm!!!

18 tháng 2 2017

Violympic toán 8

18 tháng 2 2017

chơi ăn gian wa

5 tháng 4 2020

\(B=\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2+\left(xy+\frac{1}{xy}\right)^2\)

\(-\left(x+\frac{1}{x}\right)\left(y+\frac{1}{y}\right)\left(xy+\frac{1}{xy}\right)\)

\(\Rightarrow B=x^2+2+\frac{1}{x^2}+y^2+2+\frac{1}{y^2}+x^2y^2+2+\frac{1}{x^2y^2}-x^2y^2\) 

\(-2-x^2-y^2-\frac{1}{y^2}-\frac{1}{x^2}-\frac{1}{x^2y^2}\)

\(\Rightarrow B=x^2y^2-x^2y^2+x^2-x^2+1.\frac{1}{x^2}+1.\frac{1}{x^2y^2}-1.\frac{1}{x^2}-1\)

\(.\frac{1}{x^2y^2}+1.\frac{1}{y^2}-1.\frac{1}{y^2}+y^2-y^2+2+2+2-2\)

\(\Rightarrow B=4\)

13 tháng 5 2020

Biến đổi \(\frac{x}{y^3-1}-\frac{y}{x^3-1}=\frac{x^4-x-y^4+y}{\left(y^3-1\right)\left(x^3-1\right)}=\frac{\left(x^4-y^4\right)-\left(x-y\right)}{xy\left(y^2+y+1\right)\left(x^2+x+1\right)}\)

(Do x+y=1 => \(\hept{\begin{cases}y-1=-x\\x-1=-y\end{cases}}\))

\(=\frac{\left(x-y\right)\left(x+y\right)\left(x^2+y^2\right)-\left(x-y\right)}{xy\left(x^2y^2+y^2x+y^2+yx^2+xy+y+x^2+x+1\right)}\)

\(=\frac{\left(x-y\right)\left(x^3+y^3-1\right)}{xy\left[x^2y^2+xy\left(x+y\right)+x^2+y^2+xy+2\right]}\)

\(=\frac{\left(x-y\right)\left(x^2-x+y^2-y\right)}{xy\left[x^2y^2+\left(x+y\right)^2+2\right]}=\frac{\left(x-y\right)\left[x\left(x-1\right)+y\left(y-1\right)\right]}{xy\left(x^2y^2+3\right)}\)

\(=\frac{\left(x-y\right)\left[x\left(-y\right)+y\left(-x\right)\right]}{xy\left(x^2y^2+3\right)}=\frac{\left(x-y\right)\left(-2xy\right)}{xy\left(x^2y^2+3\right)}=\frac{-2\left(x-y\right)}{x^2y^2+3}\)

\(\Rightarrow\frac{x}{y^3-1}-\frac{y}{x^3-1}+\frac{2\left(x-y\right)}{x^2y^2+3}=0\left(đpcm\right)\)