\(3^{n+2}-2^{n+2}+3^n-2^n\)

<...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 12 2017

ta có:

\(3^{n+2}-2^{n+2}+3^n-2^n=3^n.3^2-2^n.2^2+3^n-2^n\)

=\(3^n.\left(3^2+1\right)-2^n.\left(2^2+1\right)\)

\(=3^n.10-2^n.5=3^n.10-2^{n-1}.10\)

=\(10.\left(3^n-2^{n-1}\right)⋮10\)

\(\Rightarrow3^{n+2}-2^{n+2}+3^n-2^n⋮10\) (ĐPCM)

17 tháng 12 2017

Bạn ơi ! Bạn viết đề thiếu nhưng mình đã sữa giúp bạn rồi hahaoaoaeoeo

25 tháng 2 2019

3n - 2 - 2n + 2 + 3n - 2n

= 3n - 2(32 + 1) - 2n(22 + 1)

= 3n - 2(9 + 1) - 2n(4 + 1)

= 3n - 2. 10 - 2n.5

= 3n - 2 .10 - 2n - 1.10

= 10(3n - 2 - 2n - 1)

22 tháng 11 2018

Đây bạn 

\(3^{n+2}-2^{n+2}+3^n-2^n\)

\(=\left(3^{n+2}+3^n\right)-\left(2^{n+2}+2^n\right)\)

\(=3^n\left(3^2+1\right)-2^n\left(2^2+1\right)\)

\(=3^n.10-2^n.5\)

\(=3^n.10-2^{n-1}.\left(2.5\right)\)

\(=3^n.10-2^{n-1}.10\)

\(=10.\left(3^n-2^{n-1}\right)\)Chia hết cho 10

Suy ra \(3^{n+2}-2^{n+2}+3^n-2^n\)chia hết cho 10. k cho mình nha :V

22 tháng 11 2018

thấy 3n+2 +3n = 3( 32+1) = 3n.10 chia hết cho 10 với mọi n nguyên dương

và 2n+2 +2n = 2n(22+1) = 2n.5 cũng chia hết cho 10 với mọi n nguyên dương.

=> đpcm

25 tháng 10 2017

Có: 3^n+2-2^n+2-3^n-2^n

=3^n.9-2^n.4+3^n-2^n

=3^n.10-2^n.5

Mà: +,10 chia hết cho 10

=> 3^n.10 chia hết cho 10.       (1)

      +, n là số nguyên dương => n lớn hơn hoặc =1

=> 2^n.5=2.2..2.5 (n chữ số 2)

              =(2.5).2.2...2 (n-1 chữ số 2)

              =10.2.2.2..2

=> Chia hết cho 10 (tại vì có 10 chia hết cho 10)               (2)

Từ 1 và 2 => 3^n.10-2^n.5 chia hết cho 10 (Cả số bị trừ và số trừ đều chia hết cho 10-> Hiệu cũng sẽ chia hết cho 10)

=> ĐPCM.

4 tháng 2 2018

cần trả lời ko bn

6 tháng 7 2016

a) \(3^{n+2}-2^{n+2}+3^n-2^n\)

\(\Rightarrow\left(3^n\cdot3^2+3^n\right)-\left(2^n\cdot2^2+2^n\right)\)

\(\Rightarrow3^n\left(3^2+1\right)-2^n\left(2^2+1\right)\)

\(\Rightarrow3^n\cdot10-2^n\cdot5\)

\(\Rightarrow3^n\cdot10-2^{n-1}\cdot\left(2\cdot5\right)\)

\(\Rightarrow10\left(3^n-2^n\right)\) chia hết cho 10

6 tháng 7 2016

b) \(3^{n+3}+3^{n+1}+2^{n+3}+2^{n+2}\)

\(\Rightarrow3^n\cdot3^3+3^n\cdot3+2^n\cdot2^3+2^n\cdot2^2\)

\(\Rightarrow3^n\left(3^3+3\right)+2^n\left(2^3+2^2\right)\)

\(\Rightarrow3^n\cdot30+2^n\cdot12\)

\(\Rightarrow3^n\cdot6\cdot5+2^n\cdot2\cdot6\)

\(\Rightarrow6\left(3^n\cdot5+2^n\cdot2\right)\) chia hết cho 6

29 tháng 10 2017

=\(3^n\).\(3^2\)-\(2^n\).\(2^2\)+\(3^n\)-\(2^n\)

=\(^{3^n}\).9 - \(2^n\).4 +\(^{3^n}\)\(2^n\)

=10 .\(3^n\)-5.\(2^n\)

=10.\(3^n\)-5.2.\(2^{n-1}\)

=10 .(\(3^n\)-\(2^n\) )

=> chia hết cho 10

29 tháng 10 2017

Ta có: \(3^{n+2}-2^{n+2}+3^n-2^n\)

\(=3^{n+2}+3^n-\left(2^{n+2}+2^n\right)\)

\(=3^n\cdot\left(3^2+1\right)-2^n\cdot\left(2^2+1\right)\)

\(=3^n\cdot10-2^n\cdot5\)

\(=3^n\cdot10-2^{n-1}\cdot2\cdot5\)

\(=3^n\cdot10-2^{n-1}\cdot10\)

\(=\left(3^n-2^{n-1}\right)\cdot10⋮10\left(dpcm\right)\)

6 tháng 11 2017

Đặt A=3\(^{n+2}\)-2\(^{n+2}\)+3\(^n\)-2\(^n\)

      A=3\(^n\).9-2\(^n\).4+3\(^n\)-2\(^n\)

      A=3\(^n\).10-2\(^n\).5

Có 3^n.10 chia hết cho 10

     2^n chia hết cho 2;5 chia hết cho 5.Mà(2,5)=1\(\Rightarrow\)2^n.5 chia hết cho 10

Vậy A chia hết cho 10
 

22 tháng 7 2017

Ta có: \(3^{n+2}-2^{n+2}+3^n-2^n=3^{n+2}+3^n-\left(2^{n+2}+2^n\right)\)

Thấy: \(3^{n+2}+3^n=3^n.2^2+3^n=9.3^n+3^n=3^n.\left(9+1\right)=3^n.10\)

\(\Rightarrow3^{n+2}+3^n⋮10\)\(\left(1\right)\)

\(2^{n+2}+2^n=4.2^n+2^n==2^n\left(4+1\right)=2^n.5=2.2^{n-1}.5=10.2^{n-1}\)

\(\Rightarrow2^{n+2}+2^n⋮10\)\(\left(2\right)\)

Từ (1) và (2) \(\Rightarrow3^{n+2}+2^n-\left(2^{n+2}+2^n\right)⋮10\Rightarrow3^{n+2}-2^{n+2}+3^n-2^n⋮10\) (đpcm)

k!

1 tháng 9 2015

a) 3n+2-2n+2+3n-2n

=(3n+2+3n)-(2n+2-2n)

=3n(33+1)-2n(22+1)

=3n.10-2n.5

Vì 2.5 chia hết cho 10 nên 2n.5 cũng chia hết cho 10

    3n.10 chia hết cho 10 nên 

3n.10-2n.5 chia hết cho 10

=>3n+2-2n+2+3n-2n chia hết cho 10

b)

  3n+3+3n+1+2n+3+2n+2

=3n+1(32+1)+2n+2(2+1)

=3n+1.2.5+2n+1.3

=3.2.3n.5+2.3.2n+1

=3.2(3n.5+2n+1) chia hết cho 6