\(^n\)(5\(^n...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 2 2018

Bài này là đê thi HSG khối 8 đó ko phải khối 7 đâu!

Ta có:

A= \(5^n\left(5^n+1\right)-6^n\left(3^n+2^n\right)\)

  \(=25^n+5^n-18^n-12^n\)

  * \(=\left(25^n-18^n\right)-\left(12^n-5^n\right)\text{ do đó A chia hết cho 7}\)

  * \(=\left(25^n-12^n\right)-\left(18^n-5^n\right)\text{ do đó A chia hết cho 13}\)  

Do (7;13)=1 nên A chia hết cho 91 

NOTE: mk đã lm theo cách lớp 7 đó! lớp 8 thì phải dùng đồng dư thức cơ! nhưng mk lâu rồi chưa lm lại ko biết có đúng ko mong bn kiểm tra rồi thông báo cho mk sớm nhất có thể nhé!!

28 tháng 8 2016

a) \(3^{n+2}-2^{n+2}+3^n-2^n=\left(3^{n+2}+3^n\right)-\left(2^{n+2}+2^n\right)=\left(3^n.3^2+3^n\right)-\left(2^n.2^2+2^n\right)\)

\(=\left[3^n.\left(3^2+1\right)\right]-\left[2^n.\left(2^2+1\right)\right]=\left(3^n.10\right)-\left(2^{n-1}.2.5\right)=\left(3^n.10\right)-\left(2^{n-1}.10\right)\)

Do: 3n . 10 chia hết cho 10 và 2n - 1 . 10 chia hết cho 10

=> ( 3n . 10 ) - ( 2n - 1 . 10 ) chia hết cho 10  => 3n + 2 - 2n + 2 + 3n - 2n chia hết cho 10

19 tháng 10 2018

a,thay n=1 vào thì sẽ bằng 24 ko chia hết cho 10 nên đề sai

b, \(5^n\left(5^2+5^1+1\right)=5^n.31\)

5 tháng 3 2019

\(\left(3^{n+2}-2^{n+2}+3^n-2^n\right)\)

\(=3^n.3^2-2^n.2^2+3^n-2^n\)

\(=\left(3^n.9+3^n\right)-\left(2^n.4+2^n\right)\)

\(=3^n\left(9+1\right)-2^n\left(4+1\right)\)

\(=3^n\left(9+1\right)-2^{n-1}.2\left(4+1\right)\)

\(=3^n.10-2^{n-1}.10\)

\(=10\left(3^n-2^{n-1}\right)⋮10\left(ĐPCM\right)\)

30 tháng 1 2016

Sai đề.

VD: n=2=> \(A=5^2\left(5^2+1\right)-6^2\left(3^2+2\right)=25.\left(25+1\right)-36.\left(9+2\right)=25.26-36.11=650-396254\)không chia hết cho 91

8 tháng 3 2017

câu 5 :vì đồ thị của hàm số y =ax (a khác 0) là 1 đường thẵng đi qua góc toạ độ nên 3 điểm o,m,m là 1 đường thẳng ,k nha

8 tháng 3 2017

còn các câu 1;2;3;4 ai làm đc tớ sẽ*** 

17 tháng 11 2017

Giải : a) Mỗi số tự nhiên khi chia cho 6 có một trong các số dư 0 , 1 , 2 , 3 , 4 , 5 . Do đó mọi số tự nhiên đều viết được dưới một trong các dạng 6n - 2 , 6n - 1 , 6n , 6n + 1 , 6n + 2 , 6n + 3 . Vì m là số nguyên tố lớn hơn 3 nên m không chia hết cho 2 , không chia hết cho 3 , do đó m không có dạng 6n - 2 , 6n , 6n + 2 , 6n + 3 . Vậy m viết được dưới dạng 6n + 1 hoặc 6n - 1 ( VD : 17 = 6 . 3 - 1 , 19 = 6 . 3 + 1 ).

b) Không phải mọi số có dạng 6n \(\pm\)1 ( n \(\in\)N ) đều là số nguyên tố . Chẳng hạn 6 . 4 + 1 = 25 không là số nguyên tố .

=> ( đpcm ).